
D
R
A
FT

Abstract

This document specifies the semantics and behavior of the Hare programming language and serves

to inform the development of compilers and programs for its use.

The scope of this document only covers the language itself (its grammar and semantics). The

document does not specify any parts of the runtime library, nor does it specify additional details of

the environment or the programming libraries available in that environment.

This specification is a DRAFT, and is not considered authoritative. Revisions to this draft are

developed under the direction of the Hare project on SourceHut at https:// sr.ht/~sircmpwn/hare,

and the final specification will be published there as well. You may also contact the editor via email

to Drew DeVault <sir@cmpwn.com>.

https://sr.ht/~sircmpwn/hare

D
R
A
FT

Contents

1 Introduction 4

1.1 Copyright . 4

2 Scope 5

3 Terms and definitions 6

4 Conformance 7

5 Program environment 8

5.2 Translation environment . 8

5.3 Translation steps . 8

5.4 Execution environment . 8

5.4.4 The freestanding environment . 9

5.4.5 The hosted environment . 9

5.4.6 The test environment . 10

5.4.7 Program execution . 11

5.5 Diagnostics . 11

6 Language 12

6.1 Notation . 12

6.2 Lexical analysis . 13

6.3 Keywords . 14

6.4 Attributes . 14

6.5 Identifiers . 15

6.6 Types . 16

6.6.8 Integer types . 17

6.6.9 Floating point types . 18

6.6.10 Rune types . 18

6.6.11 Flexible types . 18

6.6.12 Other primitive types . 19

6.6.13 Pointer types . 21

1

D
R
A
FT

6.6.14 Struct and union types . 22

6.6.15 Tuple types . 23

6.6.16 Tagged union types . 24

6.6.17 Slice and array types . 25

6.6.18 String types . 26

6.6.19 Function types . 27

6.6.20 Type aliases . 28

6.7 Expressions . 29

6.7.4 Literals . 29

6.7.5 Floating literals . 30

6.7.9 Integer literals . 31

6.7.14 Rune literals . 32

6.7.15 String literals . 33

6.7.16 Array literals . 33

6.7.17 Struct literals . 34

6.7.18 Tuple literals . 35

6.7.19 Plain expressions . 36

6.7.20 Allocations . 36

6.7.21 Assertions . 37

6.7.22 Calls . 38

6.7.23 Measurements . 39

6.7.24 Field access . 40

6.7.25 Indexing . 41

6.7.26 Slicing . 41

6.7.27 Appending . 42

6.7.28 Inserting . 44

6.7.29 Deleting . 45

6.7.30 Error checking . 46

6.7.31 Postfix expressions . 46

6.7.32 Variadic expressions . 47

6.7.33 Builtin expressions . 48

6.7.34 Unary expressions . 48

6.7.35 Casts, type assertions, and type tests . 49

6.7.36 Multiplicative arithmetic . 51

2

D
R
A
FT

6.7.37 Additive arithmetic . 51

6.7.38 Bit shifting arithmetic . 52

6.7.39 Bitwise arithmetic . 53

6.7.40 Logical comparisons . 53

6.7.41 Logical arithmetic . 54

6.7.42 If expressions . 55

6.7.43 For loops . 56

6.7.44 Switch expressions . 58

6.7.45 Match expressions . 59

6.7.46 Assignment . 61

6.7.47 Binding expressions . 63

6.7.48 Defer expressions . 64

6.7.49 Compound expressions . 65

6.7.50 Control expressions . 66

6.7.51 High-level expression class . 67

6.8 Type promotion . 67

6.9 Translation compatible expression subset . 68

6.10 Result type reduction algorithm . 69

6.11 Flexible type promotion algorithm . 70

6.12 Declarations . 71

6.12.4 Global declarations . 71

6.12.5 Constant declarations . 72

6.12.6 Type declarations . 73

6.12.7 Function declarations . 74

6.13 Units . 75

A Language syntax summary 77

3

D
R
A
FT

1 Introduction

1.1 The purpose of this document is to promote the portability of Hare programming systems and to

serve as a reference for implementors and users of Hare programming environments.

1.2 Numbered text in this document is authoritative unless otherwise noted.

1.3 Sentences displayed in italics are non-authoritative (they are informative).

This is an example of informative text.

1.4 The abstract and appendices are informative.

1.1 Copyright

© Drew DeVault, Ember Sawady, et al., 2020–2024

This document is licensed under the terms of CC-BY-ND. Free redistribution of this document is

permitted, but derivative works are not allowed. Software which implements this specification are

not considered derivative works; you may freely apply this specification as such without restriction.

4

D
R
A
FT

2 Scope

2.1 This document establishes the form and semantics of the Hare programming language. It specifies:

2.1.1 The representation of Hare programs.

2.1.2 The syntax and constraints of the Hare language.

2.1.3 The semantic rules for the correct interpretation of a Hare program.

2.2 This standard does not specify:

2.2.1 The means by which program source code is processed by an interpreter or compiler.

However, «Appendix ??: Hare compiler conventions» provides an informative reference of

common conventions for compiler and interpreter programs.

2.2.2 The means by which the environment interprets Hare programs.

2.2.3 The minimum requirements or maximum capabilities of a system capable of interpreting

Hare programs.

5

D
R
A
FT

3 Terms and definitions

3.1 abort: a process in which the «5.4: Execution environment» immediately proceeds to the program

teardown step «5.4.3: Execution environment».

3.2 alignment: a specific multiple of an octet-aligned storage address at which some data expects to be

stored. The size of an object must be a multiple of its alignment.

Example An object with an alignment of 8 may be stored at addresses 8, 16, 32, and so on; but not

at address 4, unless the implementation supports unaligned memory accesses.

3.3 character: a single Unicode codepoint encoded in the UTF-8 format.

3.4 expression: a description of a computation which may be executed to obtain a result with a specific

result type.

3.5 expression class: a grouping of expressions with similar properties or for grammatical disam-

biguation.

3.6 implementation-defined: a detail which is not specified by this document, but which the imple-

mentation is required to define.

3.7 operand: an input into an operator, together they form an operation. An operand is an expression,

and the input to the operator shall be its result.

3.8 padding: unused octets added to the storage of some data in order to meet a required alignment.

The value of these octets is undefined.

3.9 size: the number of octets required to represent some data, including padding.

3.10 undefined: a detail which is not specified by this document, and which the implementation is not

required to define.

6

D
R
A
FT

4 Conformance

4.1 "Shall" is interpreted as a requirement imposed on the implementation or program; and "shall not"

is interpreted as a prohibition.

4.2 "May" is used to clarify that a particular interpretation of a requirement of this specification is

considered within the acceptable bounds for conformance. Conversely, "may not" is used to denote

an interpretation which is not considered conformant.

4.3 A conforming implementation shall meet the following requirements:

4.3.1 It shall implement all of the behavior defined in the authoritative text of this specification.

4.3.2 It shall not implement any behavior which is included by «2.1: Scope» but is not defined

by this specification.

This is to say that vendor extensions are prohibited of conformant implementations.

4.3.3 It may implement behavior which is excluded by «2.2: Scope» and which is not defined by

this specification.

7

D
R
A
FT

5 Program environment

5.1 The implementation translates source files and executes programs in twophases, respectively referred

to as the translation phase and the execution phase. The context in which these phases occur is

referred to as the translation environment and the execution environment.

5.2 Translation environment

5.2.1 A Hare program consists of one or more source files which are provided to the translation

phase. A source file shall be represented as text encoded in the UTF-8 format.

5.2.2 Each source file is a member of exactly one module, and the collective source files for a

module form a translation unit. Every module contains one or more declarations, any

number of which may be exported for use by other modules.

Forward references: «6.13: Units»

5.3 Translation steps

5.3.1 The list of source files constituting the translation unit are identified in an implementation-

defined manner. Steps «5.3.2: Translation steps» and «5.3.3: Translation steps» are

repeated for each source file.

5.3.2 Lexical analysis is conducted on the source file, translating it into a stream of tokens.

Forward references: «6.2: Lexical analysis»

5.3.3 Syntax analysis is conducted on the token stream, mapping the tokens to a sub-unit.

Forward references: «6.13: Units»

5.3.4 Logical analysis is conducted on the sub-units. In this step, the implementation verifies the

constraints imposed on the program. The result of this step is a verified program module.

In this step, colloquially referred to as the "check" step, a module composed of several

source files is consolidated into a single verified program module.

5.3.5 The verified program module is combined with any dependencies and translated into a

single program image which is suitable for interpretation by the execution environment.

5.4 Execution environment

5.4.1 Three execution environments are defined: freestanding, hosted, and test. The imple-

mentation must support a freestanding environment; support for any other environment is

implementation-defined.

5.4.2 During program startup, the execution environment shall first initialize all global decla-

8

D
R
A
FT

rations to their initial values in an implementation-defined manner. The next steps are

dependent on the execution environment.

5.4.3 Behavior during program teardown is dependent on the execution environment.

5.4.4 The freestanding environment

5.4.4.1 In the freestanding environment, behavior during program startup after global

declarations are initialized, behavior during program teardown, as well as behavior

of initialization and finalization functions, is undefined.

Forward references: «6.12.7: Function declarations»

5.4.5 The hosted environment

5.4.5.1 In the hosted environment, after global declarations are initialized during program

startup, the execution environment shall call all initialization functions in an order

such that the initialization functions for a given module are run before those of any

module that depends on it, then transfer control to the program entry point in an

implementation-defined manner. The ordering of initialization functions within a

module shall be undefined.

5.4.5.2 Program teardown in the hosted environment shall cause the execution environment

to call all finalization functions in an order such that the finalization functions for a

given module are run after those of any module that depends on it, then terminate.

The ordering of finalization functions within a module shall be undefined.

5.4.5.3 The program entry point shall be a function named main in the root namespace.

The declaration shall not have any attributes. The function shall have no parameters

and a result type of void. The declaration shall be exported, unless the declaration

is a prototype, in which case it need not be exported.

The signature of a conformant entry point follows:

export fn main() void;

The program shall provide this declaration in the root namespace.

5.4.5.4 Alternatively, the entry point may be declared with a different name and/or in a

different namespace if a recognized form of @symbol is supplied to the declaration.

The set of recognized forms, if any exist, are implementation-defined.

If an implementation used the symbol "main" for its entry point, the following

signature would be a valid entry point declaration:

export @symbol("main") fn any::other::name() void;

5.4.5.5 The identifier main shall not be used for any root namespace declaration which

would not be a valid entry point, unless the declaration uses any of @symbol,

@init, @fini, or @test. The implementation-defined set of recognized forms of

9

D
R
A
FT

@symbol shall not be used in any namespace for a declaration which would not be a

valid entry point. Every program which runs in the hosted environment shall have

exactly one entry point.

5.4.5.6 Returning from the program entry point shall begin the program teardown process.

Forward references: «6.12.4: Global declarations», «6.12.7: Function declara-

tions»

5.4.6 The test environment

5.4.6.1 In the test environment, after global declarations are initialized during program

startup, the execution environment shall call all initialization functions in an order

such that the initialization functions for a given module are run before those of any

module that depends on it, then transfer control to the test runner. The ordering of

initialization functions within a module shall be undefined.

5.4.6.2 Program teardown in the hosted environment shall cause the execution environment

to call all finalization functions in an order such that the finalization functions for a

given module are run after those of any module that depends on it, then terminate.

The ordering of initialization functions within a module shall be undefined.

5.4.6.3 The test runner shall call any number of test functions in an undefined order, and

then begin the program teardown process.

The implementation should provide a means for the user to specify which tests to

run.

5.4.6.4 Prior to calling each test function, as well as after calling the final test function,

the test runner shall reset the execution environment in an implementation-defined

manner.

Example Resetting the execution environment may involve setting the floating

point rounding mode to the default, clearing all floating point exceptions, resetting

all signal handlers to their defaults, and routing standard I/O streams to known

locations.

5.4.6.5 Each test function designates one test, which shall either pass or fail. By default,

if control returns from a test function, the test passes; if the test function aborts

(such as from an assertion-expression or a failed type assertion), the test fails. The

implementation may declare functions in the runtime library which change the

pass and fail conditions for the running test; these conditions shall be reset to their

defaults before calling the next test function. Aborting from a test function shall

not terminate the program; the next test function shall always be executed.

5.4.6.6 The test runner shall keep track of which tests pass and which tests fail, and print

this information in an implementation-defined manner, possibly alongside other

messages.

Forward references: «6.12.7: Function declarations»

10

D
R
A
FT

5.4.7 Program execution

5.4.7.1 The evaluation of an expression may have side-effects in addition to computing a

value. Calling a function or modifying an object is considered a side-effect.

5.4.7.2 If the implementation is able to determine that the evaluation of part of an expression

is not necessary to compute the correct value and cause the same side-effects to

occur in the sameorder, itmay rewrite or re-order the expressions or sub-expressions

to produce the same results more optimally.

The interpretation of this constraint should be conservative. Implementations

should prefer to be predictable over being fast. Programs which require greater

performance should prefer to hand-optimize their source code for this purpose.

Forward references: «6.7: Expressions»

5.5 Diagnostics

5.5.1 If the constraints are found to be invalid during the translation phase, the implementation

shall display an error indicating which constraint was invalidated, and indicate that the

translation has failed in whatever manner is semantically appropriate.

Example On a Unix-like system, the semantically appropriate indication of failure is to

exit with a non-zero status code.

5.5.2 In the translation environment, if the implementation is able to determine that multiple

constraints are invalid, it may display several diagnostic messages.

5.5.3 If the constraints are found to be invalid during the execution phase, a hosted implementation

shall abort the execution phase, display a diagnostic message, and indicate that the execution

has failed in whatever manner is semantically appropriate.

11

D
R
A
FT

6 Language

6.1 Notation

A summary of the language syntax is given in «Appendix A: Language syntax summary».

6.1.1 The notation used in this specification indicates non-terminals with italic type, terminals

with bold type, and optional symbols use "opt" in subscript. Non-terminals referenced in

the text use the expression notation. The following example denotes an optional expression

enclosed in literal braces:

{ expressionopt }

6.1.2 When there are multiple options for a single non-terminal, they will either be printed on

successive lines, or the preceeding authoritative text will use the key phrase "one of".

6.1.3 Most nonterminals are tolerant of white-space characters inserted between their termi-

nals. However, some are not—these will use the key phrase "exactly" in their grammar

description.

6.1.4 A non-terminal is defined with its name, a colon (‘:’), and the options; indented and shown

with one option per line. For example, switch-cases is defined like so:

switch-cases:

switch-case ;

switch-case ; switch-cases

6.1.5 When the U+XXXX notation is used, where XXXX denotes any number of hexadecimal digits,

the hexadecimal digits are to be interpreted as the value of the denoted Unicode codepoint,

as specified by ISO/IEC 10646.

Example U+000A denotes the Unicode codepoint with the value 10 (line feed).

6.1.6 Additionally, text may appear in the notation without italics or bold font; it appears in the

same style as the authoritative text. Such examples are used to describe how a particular

terminal sequence is matched when enumerating all of the possibilities is not practical.

rawstring-char:

Any character other than `

12

D
R
A
FT

6.2 Lexical analysis

token:

comment

integer-literal

floating-literal

rune-literal

string-section

keyword

name

operator

attribute

invalid-attribute

operator: one of:

! != % %= & && &&= &= () * *= + += , - -= / /= :

:: ; < << <<= <= = == => > >= >> >>= ? [] ^ ^= ^^ ^^= { |

|= || ||= } ~

comment: exactly:

// comment-chars

comment-chars: exactly:

comment-char comment-charsopt

comment-char:

Any character other than U+000A

6.2.1 A token is the smallest unit of meaning in the Hare grammar. The lexical analysis phase

processes a source file to produce a stream of tokens by matching the terminals with the

input text.

6.2.2 Tokens may be separated by white-space characters, which are defined as the Unicode

codepoints U+0009 (horizontal tabulation), U+000A (line feed), and U+0020 (space). Any

number of white-space characters may be inserted between tokens, either to disambiguate

from subsequent tokens, or for aesthetic purposes. This white-space is discarded during

the lexical analysis phase.

Within a single token, white-space is meaningful. For example, the string-literal token is

defined by two quotation marks " enclosing any number of literal characters. The enclosed

characters are considered part of the string-literal token and any white-space therein is not

discarded.

6.2.3 The lexical analysis process shall repeatedly consume Unicode characters from the source

file input until there are no more characters to consume. White-space characters shall be

discarded. When a non-white-space character is encountered, it shall mark the beginning

of a token: the longest sequence of characters which constitutes a token shall then be

consumed, except that if the previously emitted token was ., the consumed token shall not

13

D
R
A
FT

be a floating-literal. The token is then emitted to the token stream, unless the token is a

comment, in which case it shall be discarded. If no token can be formed, a diagnostic

message shall be printed and the translation phase shall abort.

6.3 Keywords

keyword: one of:

abort align alloc append as assert bool break case const continue

def defer delete done else enum export f32 f64 false fn for

free i16 i32 i64 i8 if insert int is len let match never null

nullable offset opaque return rune size static str struct switch

true type u16 u32 u64 u8 uint uintptr union use vaarg vaend

valist vastart void yield _

6.3.1 Keywords are terminals with special meaning. These names are case-sensitive. Keywords

are reserved for elements of the syntax. A token which has the form of a keyword shall not

be consumed as a name.

Keywords can’t be used within identifiers or labels.

6.4 Attributes

attribute: one of:

@fini @init @offset @packed @symbol @test @threadlocal

invalid-attribute: exactly:

@ name

6.4.1 Attributes are terminals with special meaning. They are case-sensitive.

6.4.2 invalid-attribute isn’t used anywhere in the syntax. If an invalid-attribute is consumed

during lexical analysis, the program is invalid, and the translation phase shall print a

diagnostic message and abort. A token which satisfies the grammar for attribute shall not

be consumed as an invalid-attribute.

The purpose of invalid-attribute is to disallow the use of a keyword or name immediately

after an attribute, unless the tokens are separated by white-space. Thus, the following

program is invalid:

@testfn test() void = void;

14

D
R
A
FT

6.5 Identifiers

identifier:

name

name :: identifier

name: exactly:

nondigit

name alnum

nondigit: one of:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z
_

decimal-digit: one of:

0 1 2 3 4 5 6 7 8 9

alnum:

decimal-digit

nondigit

6.5.1 An identifier is a user-defined sequence of name components which denote a namespace,

object, function, type alias, or enumeration value.

6.5.2 An identifier is onlymeaningful within a specific scope of the program. The scope is defined

by the region of the program it encompasses: it may be a translation unit, a sub-unit, a

function, enum-values, a for-loop, or a compound-expression. After an identifier is inserted

into a scope, it is considered visible within the region that defines its scope.

6.5.3 Scopes may overlap one another. For any two overlapping scopes, one scope will encompass

a region which is contained entirely within the region encompassed by the other scope.

6.5.4 Scopes which encompass a for-loop or compound-expression may be labelled. A labelled

scope has a name associated with it; the name need not be unique.

6.5.5 Every module in a program, except for one, is assigned a unique identifier; this is the

module’s namespace. The exempt module may also be assigned an identifier, or it may

instead be assigned the root namespace. Unless otherwise specified, identifiers within a

program don’t designate namespaces.

6.5.6 The implementation may define the maximum length of an identifier and/or name.

15

D
R
A
FT

6.6 Types

type:

constopt !opt storage-class

storage-class:

primitive-type

pointer-type

struct-union-type

tuple-type

tagged-union-type

slice-array-type

function-type

alias-type

unwrapped-alias

primitive-type:

integer-type

floating-type

bool

done

never

opaque

rune

str

valist

void

6.6.1 A type defines the storage and semantics of a value. The properties common to all types

are its size, in octets; its alignment, in octets; its constant or mutable nature; its error flag,

or lack thereof; and its default value. The size, alignment, and default value of a type may

be undefined.

6.6.2 The implementation shall assign a globally unique ID to every type, in a deterministic

manner, such that several subsequent translation environments, perhaps with different

inputs, will obtain the same unique ID; and such that distinct types shall have distinct IDs.

This specification details under what circumstances two types are equivalent to one another,

and thus shall have the same ID. For all types, any two types are distinct if their type class,

their constant or mutable nature, their error flag or lack thereof, or their default values,

are distinct. Each type class may impose additional distinguishing characteristics on their

types, which are specified in their respective sections.

6.6.3 Some types have an undefined size. This includes function-type, and some cases of

slice-array-type.

6.6.4 If the size of a type isn’t undefined, but it would exceed the maximum value representable

as size, the translation environment shall print a diagnostic message and abort.

Forward references: «6.6.8: Integer types»

16

D
R
A
FT

6.6.5 The const terminal, when used in a type specifier, enables the constant flag and prohibits

write operations on any value of that type. Types without this property are considered

mutable by default.

6.6.6 The ! terminal, when used in a type specifier, sets the error flag for this type.

6.6.7 The type class of a type is defined for primitive types as the terminal which represents it,

for example i32.

6.6.8 Integer types

integer-type: one of:

i8 i16 i32 i64 u8 u16 u32 u64 int uint size uintptr

6.6.8.1 Integer types represent an integer value at a specific width. These values are

either signed or unsigned; which respectively are and are not able to represent

negative integers. Integer types are considered numeric types. Types specified by

an integer-type terminal are primitive types.

6.6.8.2 Signed integer types shall be represented in two’s complement form, such that arith-

metic on signed operands behaves identically to arithmetic on unsigned operands.

The most significant bit of a signed integer shall determine the sign of the value:

the value shall be positive if the most significant bit is unset, otherwise it shall be

negative. Zero shall be positive.

6.6.8.3 For integer types whose size is greater than one octet, the order in which its octets

are represented is implementation-defined, provided that the significance strictly

either increases or decreases as the memory address increases.

6.6.8.4 If an operation on an integer type would cause the result to overflow, it is truncated

towards the least significant bit.

6.6.8.5 The width in bits of i8, i16, i32, i64, u8, u16, u32, and u64 are specified by the

numeric suffix. Of those, types prefixed with u are unsigned, and those prefixed

with i are signed.

6.6.8.6 The width of int and uint are implementation-defined. int shall be signed, and

uint shall be unsigned. Both types shall have the same width, which, in bits, shall

be a power of two no smaller than 32.

6.6.8.7 The width of size is implementation-defined. It shall be unsigned and shall be

able to represent every possible definite type size supported by this implementation,

such that the maximum size value is also the maximum supported type size. The

width in bits shall be a power of two no larger than the width of uintptr.

6.6.8.8 The width of uintptr is implementation-defined. It shall be unsigned and shall

have the same representation as a pointer-type. The width in bits shall be a power

of two.

6.6.8.9 The alignment of integer types shall be equal to their size in octets.

6.6.8.10 The default value of an integer type shall be zero.

The following table is informative.

17

D
R
A
FT

Type Width in bits Minimum value Maximum value

i8 8 -128 127

i16 16 -32768 32767

i32 32 -2147483648 2147483647

i64 64 -9223372036854775808 9223372036854775807

u8 8 0 255

u16 16 0 65535

u32 32 0 4294967295

u64 64 0 18446744073709551615

int ≥ 32 ≤ −2147483648 ≥ 2147483647

uint ≥ 32 0 ≥ 4294967295

size ∗ 0 ∗

uintptr ∗ 0 ∗

∗ implementation-defined

6.6.9 Floating point types

floating-type:

f32

f64

6.6.9.1 Floating point types shall represent approximations to real numbers. Floating point

types are considered numeric types. Types specified by a floating-type terminal are

primitive types.

6.6.9.2 The bit layout of floating point types shall be implementation-defined.

6.6.9.3 f32 shall have a width of 32 and a size and alignment of 4. f64 shall have a width

of 64 and a size and alignment of 8.

6.6.9.4 The alignment of floating point types shall be equal to their size in octets.

6.6.9.5 If an operation on a floating point type would cause the result to overflow or

underflow, it is truncated towards zero.

6.6.9.6 The default value of a floating point type shall be positive zero, which shall be

representable in all floating point types.

6.6.10 Rune types

6.6.10.1 The rune type represents a Unicode codepoint, encoded as a u32.

6.6.11 Flexible types

6.6.11.1 Flexible types are used during the translation phase as the result types of literals

whose final result types have not yet been determined. The three classes of flexible

type are flexible integers, flexible floats, and flexible runes. The size and align-

ment of flexible types shall be undefined. Flexible integers and flexible floats are

considered numeric types.

18

D
R
A
FT

Flexible types are not representable within the grammar. They are for internal use

only, as the result type of integer-literal, floating-literal, and rune-literal.

6.6.11.2 A flexible integer shall have a maximum and minimum value associated with it,

each of whichmay assume any value in the inclusive range -9223372036854775808

to 18446744073709551615. The minimum value shall represent the value of the

smallest integer literal which may have this result type, and the maximum value

shall represent the largest. The minimum value shall always be less than or equal

to the maximum, and the type shall be considered unsigned if and only if the

minimum value is greater than or equal to zero.

6.6.11.3 A flexible rune shall have one value associated with it, which represents the value

of the rune literal which has this result type.

6.6.11.4 The default type for a flexible float shall be f64. The default type for a flexible rune

shall be rune. The default type for a flexible integer shall be int if the maximum

and minimum values are representable as int, otherwise i64 if the maximum

and minimum values are representable as i64, otherwise u64 if the maximum and

minimum values are representable as u64, otherwise the translation environment

shall print a diagnostic message and abort.

6.6.11.5 An expression with a flexible result type may have its result type lowered to a

different type by the «6.11: Flexible type promotion algorithm», causing it to be

replaced by the new type. If a flexible type hasn’t been lowered by the end of the

translation phase, it shall be lowered to its default type.

6.6.11.6 If a flexible type is embedded within another type, it shall first be lowered to its

default type.

This is intended to ease implementation, in order to prevent a type’s ID, size, and

alignment from changing partway through the translation phase.

6.6.12 Other primitive types

The bool type

6.6.12.1 The bool type represents a boolean value, which may have one of two states: true

(represented as one) or false (represented as zero).

6.6.12.2 The boolean type shall have the same representation, size, and alignment as u8.

6.6.12.3 If a boolean object has a value which isn’t true or false, the interpretation of the

value is undefined.

This isn’t possible under normal circumstances, but certain operations such as

invalid casts and incorrect external function implementations can cause this to

occur.

6.6.12.4 The default value of a boolean type is false.

The done type

6.6.12.5 The done type represents an object that indicates the end of an for-each iterator

loop. Only one value with this type exists (the done value); this value is also the

default value.

19

D
R
A
FT

6.6.12.6 The size and alignment of done shall be zero.

6.6.12.7 The done type shall not have its error flag set.

The never type

6.6.12.8 The never type has no representable values, and no storage. It is used as the result

type of expressions which are guaranteed to never return to their caller.

6.6.12.9 The size and alignment of never shall be undefined.

6.6.12.10 If an expression whose result type is never returns to its caller, behavior is unde-

fined.

This isn’t possible under normal circumstances, but conditions such as incorrect

external function implementations and invalid function pointer casts can cause this

to occur.

The null type

The null type is not representable within the grammar. It is for internal use only,

as the result type of the null expression.

6.6.12.11 The null type shall have the same representation as a pointer and can only store

a specific, implementation-defined value (the null value). The null value shall be

distinct from every possible address which may point to a valid object.

On most implementations, null is represented as zero.

The opaque type

The opaque type represents an object whose size, alignment, and representation

are unknown. As such, the opaque type has an undefined size and alignment, and

can’t store any value.

No value exists whose type is opaque. Rather, opaque is intended to be used as the

secondary type of a pointer or slice type, to exchange data whose representation

is generic or unknown.

The valist type

6.6.12.12 The valist type is provided for compatibility with the C programming language as

specified by ISO/IEC 9899. Support for it is implementation-defined: implemen-

tations which do not provide C ABI compatibility must print a diagnostic message

and abort if this type is used.

6.6.12.13 The size and alignment of valist shall be an implementation-defined non-zero

multiple of eight.

6.6.12.14 Assigning to a valist object from an object-selector shall initialize a copy of the

object-selector, exactly as though a new valist were initialized with vastart

in the same function the object-selector was initialized in, followed by the same

sequence of vaarg uses that had been previously used to reach the present state of

the object-selector.

If any previously evaluated vaarg expression on the object-selector violated a

runtime constraint, behavior of all further vaarg expressions on the newly created

object is undefined.

20

D
R
A
FT

Forward references: «6.7.32: Variadic expressions»

6.6.12.15 A valist object shall only be valid within the function it was initialized in.

The void type

6.6.12.16 The void type represents an object with no storage. Only one value with this type

exists (the void value); this value is also the default value.

6.6.12.17 The size and alignment of void shall be zero.

6.6.13 Pointer types

pointer-type:

* type

nullable * type

6.6.13.1 A pointer type is an indirect reference to an object of a secondary type. The notation

of a pointer type is a * prefix before the secondary type.

6.6.13.2 A pointer type prefixed with nullable is considered a nullable pointer type, and

shall refer to either a valid secondary object or to a special value called null. A

non-nullable pointer type shall always refer to a valid secondary object.

6.6.13.3 A pointer type’s secondary type must have a non-zero size. Its size may be

undefined. The secondary type shall not be never.

6.6.13.4 The representation of a pointer type shall be implementation-defined, and it shall

have the same size and alignment as uintptr.

6.6.13.5 The default value of a nullable pointer type is null. The default value of a non-

nullable pointer type is undefined.

6.6.13.6 A pointer type shall be equivalent to another pointer type only if they share the

same secondary type and nullable status.

21

D
R
A
FT

6.6.14 Struct and union types

struct-union-type:

struct @packedopt { struct-fields }

union { struct-union-fields }

struct-union-fields:

struct-union-field ,opt

struct-union-field , struct-union-fields

struct-union-field:

name : type

struct-union-type

identifier

struct-fields:

struct-field ,opt

struct-field , struct-fields

struct-field:

offset-specifieropt struct-union-field

offset-specifier:

@offset (expression)

6.6.14.1 The struct type and union type collect multiple types, name them, and assign them

offsets within their storage area. A union type stores all of its values at the same

offset; a struct type may store its values at different offsets. A type defined with

the struct terminal is a struct type and uses the struct type class; if the union

terminal is used the type is a union type with the union type class.

6.6.14.2 The struct-union-fields list denotes, in order, the subvalues which are collected by

a struct or union, and potentially assigns a name to each.

6.6.14.3 For a struct type, the offset of each field is equal to the minimum aligned offset

which would meet the alignment requirements of the field’s type and which is

greater than or equal to the offset of the previous field plus the size of the previous

field. The implementation shall add padding to meet the alignment requirements

of struct fields. For a union type, the offset of all members is zero. Padding

shall additionally be added to the end of a struct or union type whose alignment is

non-zero, such that the total size of the struct or union type modulo its alignment

is zero. A struct or union type’s alignment is the maximum alignment among its

fields.

6.6.14.4 For a struct type using the @packed attribute, the offset of each field shall be

computed without respect to alignment, such that each field’s offset is equal to the

offset of the previous field plus the size of the previous field. No additional padding

shall be added to the end of the struct type in this case. If the alignment of the

struct fields or the struct type itself would not meet the alignment requirements for

their respective type, the behavior is implementation-defined. The implementation

22

D
R
A
FT

shall either raise a diagnostic message and terminate the translation phase, or shall

support unaligned memory accesses (perhaps at a cost to performance).

6.6.14.5 The type of each struct or union field shall have a definite size.

6.6.14.6 If given, the offset-specifier shall override the computed offset for a given field. If

the user-defined offset for a field would not meet the alignment requirements for

that type, the behavior is implementation-defined. The implementation shall either

raise a diagnostic message and terminate the translation phase, or shall support

unaligned memory accesses (perhaps at a cost to performance).

6.6.14.7 The expression given for the offset-specifier shall be an integer, and shall be limited

to the «6.9: Translation compatible expression subset». Its value shall not be

negative, and, if the field the offset-specifier applies to isn’t the first field in the

struct type, its value shall be greater than or equal to the offset of the previous field

plus the size of the previous field’s type.

6.6.14.8 The default value of a struct type shall be defined as a value whose fields assume

the default values of their respective types. If any field’s default value is undefined,

the struct type’s default value shall also be undefined.

6.6.14.9 The default value of a union type shall be undefined.

6.6.14.10 If the struct-union-type form of struct-union-field is given, the parent type shall

collect the fields of the child type as its own. The offset of each field within the

child type shall be the sum of the offset within the child type and the offset the child

type occupies within the parent struct. The identifier form shall be interpreted in

the same manner as a struct-union-type if it refers to a type alias of a struct or union

type, or an alias thereof, otherwise a diagnostic message shall be printed and the

translation phase shall abort.

Forward references: «6.6.20: Type aliases»

6.6.14.11 A struct or union type shall be equivalent to another struct or union type if their

fields are of equivalent name, type, and offset, without respect to the order of their

appearance in the program source.

The following types are equivalent:

struct { a: int, b: int }

struct { a: int, struct { b: int } }

6.6.14.12 Each field name (including names of embedded fields) shall be unique within the

set of all field names of the struct-union-type.

6.6.15 Tuple types

tuple-type:

(tuple-types)

tuple-types:

type , type ,opt

type , tuple-types

23

D
R
A
FT

6.6.15.1 A tuple type stores two or more values of arbitrary types in a specific order. It

is similar to a struct type, but without names for each of its subvalues. Each

value is stored at a given offset, possibly with padding added to meet alignment

requirements.

6.6.15.2 The offset of each value is equal to the minimum aligned offset which would

meet the alignment requirements of the value’s type and which is greater than

or equal to the offset of the previous value plus the size of the previous value

type. The implementation shall add padding to meet the alignment requirements

of tuple values. Padding shall additionally be added to the end of a tuple type

whose alignment is non-zero, such that the total size of the tuple type modulo its

alignment is zero.

6.6.15.3 The size of a tuple is the sum of the sizes of its value types plus any necessary

padding. The alignment is the maximum alignment among its value types.

6.6.15.4 The type of each tuple value shall have a definite size.

6.6.15.5 The default value of a tuple type shall be defined such that its values assume the

default values of their respective types. If any subtype’s default value is undefined,

the tuple type’s default value shall also be undefined.

6.6.15.6 Two tuple types shall be equivalent to each other if they have the same value types

in the same order.

6.6.16 Tagged union types

tagged-union-type:

(tagged-types)

tagged-types:

type | type |opt

type | tagged-types

6.6.16.1 A tagged union stores a value of one of its constituent types, as well as a tag

which indicates which of the constituent types is selected. The constituent types

are defined by tagged-types.

6.6.16.2 The same type may be specified in tagged-types more than once, with no effect.

Tagged unions must have at least two distinct constituent types.

6.6.16.3 The representation of a tagged union consists of the tag, represented as a u32,

followed by a storage area for the values of each possible constituent type. The

storage area for the value of each constituent type is located at the smallest offset

following the tag which meets its alignment requirements, with padding inserted

between the tag and value as necessary.

6.6.16.4 The tag value shall be the type ID of the type which is selected from the constituent

types. This value shall be stored at the u32 field and shall indicate which type is

stored in the value area.

6.6.16.5 The alignment of a tagged union type shall be the alignment of the u32 type or the

24

D
R
A
FT

maximum alignment of the constituent types, whichever is greater.

6.6.16.6 The size of a tagged union type shall be the maximum size of its constituent types,

plus the size of the u32 type, plus any padding added per «6.6.16.2: Tagged union

types».

6.6.16.7 If a member type among tagged-types is a tagged union type, it shall be reduced

such that nested tagged union type is replaced with its constituent types in the

parent union.

The types (A | (B | (C | D))) and (A | B | C | D) are equivalent.

6.6.16.8 The default value of a tagged union type is undefined.

6.6.16.9 A tagged union type shall be equivalent to another tagged union type if they share

the same set of secondary types, without regard to order, and considering the

secondary types of nested tagged unions as members of the set of their parent’s

secondary types.

It follows that the types (A | B) and (B | A) are equivalent.

6.6.17 Slice and array types

slice-array-type:

[] type

[expression] type

[*] type

[_] type

6.6.17.1 An array type stores one or more items of a uniform secondary type. The number

of items stored in an array type (its length) is a property of the array type and is

specified during the translation phase. The secondary type shall have a definite,

non-zero size.

6.6.17.2 The expression representation is used for array types of a determinate length, that

is, with a determinate number of items. Such arrays are bounded. The expression

must evaluate to a non-negative integer value, and shall be limited to the «6.9:

Translation compatible expression subset».

6.6.17.3 An array type may be unbounded, in which case the length is not known. The *

representation indicates an array of this type.

6.6.17.4 An array may be bounded, but infer its length from context, using the _ represen-

tation. Such an array is said to be context-defined.

6.6.17.5 An array type may be expandable. This state is not represented in the type

grammar, and is only used in specific situations. Array types are presumed to be

non-expandable unless otherwise specified.

6.6.17.6 The representation of an array type shall be the items concatenated one after

another, such that the offset of the Nth item (starting at zero) is determined by the

equation N × S, where S is the size of the secondary type.

6.6.17.7 A slice type stores a pointer to an unbounded array type, with a given capacity and

25

D
R
A
FT

length, which respectively refer to the number of items that the unbounded array

may store without re-allocation, and the number of items which are currently in

use. The secondary type shall not have a size of zero, and shall not be never. The

representation with no lexical elements between [and] indicates a slice type.

6.6.17.8 The representation of a slice type shall be equivalent to the following struct type:

struct {

data: nullable *opaque, // See notes

length: size,

capacity: size,

}

If the secondary type has a definite size, the type of the data field shall be a

nullable pointer to an unbounded array of the secondary type, otherwise, it shall

be a nullable pointer to an unbounded array whose secondary type is unknown.

6.6.17.9 The alignment of an array type shall be equivalent to the alignment of the underlying

type. The alignment of a slice type shall be equivalent to the alignment of the size

type or «6.6.13: Pointer types», whichever is greater.

6.6.17.10 The size of a bounded array type shall be equal toN×S, where N is the length and

S is the size of the underlying type. The size of an unbounded array is undefined.

The size of a slice type shall be equal to the size of the struct type defined by

«6.6.17.6: Slice and array types».

6.6.17.11 The default value of a bounded array type shall be an array whose members are all

set to the default value of the secondary type. If the array is unbounded, or if the

default value of the secondary type is undefined, the default value of the array type

is undefined.

6.6.17.12 The default value of a slice type shall have the capacity and length fields set to zero

and the data field set to null.

6.6.17.13 An array type shall be equivalent to another array type only if its length and

secondary types are equivalent. A slice type shall only be equivalent to a slice type

with the same secondary type.

6.6.18 String types

6.6.18.1 The str type (or string type) stores a reference to a sequence of Unicode codepoints,

encoded as UTF-8, along with its length and capacity. The length and capacity are

measured in octets, rather than codepoints.

6.6.18.2 The representation of the string type shall be equivalent to the following struct

type:

struct {

data: nullable *[*]const u8,

length: size,

capacity: size,

}

26

D
R
A
FT

6.6.18.3 The default value of a string type shall have the length field set to zero and the data

field set to null.

6.6.19 Function types

function-type:

fn prototype

prototype:

(parameter-listopt) type

parameter-list:

parameters ,opt

parameters ...

parameters , ...

...

parameters:

parameter

parameters , parameter

parameter:

name : type default-valueopt
type default-valueopt

default-value:

= expression

6.6.19.1 Function types represent a procedure which may be completed in the «5.4: Execu-

tion environment» to obtain a result and possibly cause side-effects (see «5.4.7.1:

Program execution»).

6.6.19.2 The properties of a function type are its result type and parameters. A function

type must have one result type and zero or more parameters. Within a list of

parameters, no two parameters which use the name form may have the same name.

The type of every parameter shall have a definite size.

6.6.19.3 If the second form of parameter-list is used, the final parameter of the function type

uses Hare-style variadism. If the third or fourth form is used, the function uses

C-style variadism. The variadism of a function type affects the calling semantics

for that function.

// Hare-style variadism:

fn(x: int, y: int, z: int...)

// C-style variadism:

fn(x: int, y: int, ...)

Forward references: «6.7.22: Calls»

27

D
R
A
FT

6.6.19.4 Support for C-style variadism is implementation-defined. If the implementation

does not support C-style variadism, it must print a diagnostic message and abort

the translation environment for programs which attempt to utilize it.

6.6.19.5 The type of a parameter which uses Hare-style variadism shall be a slice of the

specified type.

Therefore, in the case of fn(x: int...), the type of x shall be const []int.

6.6.19.6 If a parameter has a default-value, then all subsequent parameters shall have a

default-value. The trailing parameter in a function that uses Hare-style variadism

shall not have a default-value, even if preceeding parameters do.

6.6.19.7 The expression in a default-value shall be limited to the «6.9: Translation compat-

ible expression subset», and its result type shall be assignable to the parameter’s

type.

6.6.19.8 The size, alignment, default value, and storage semantics of function types is

undefined.

6.6.19.9 Two function types are only equivalent if they have equivalent result types, the

same number of parameters, equivalent types and initializers (if present) for each

respective parameter, and the same variadism.

6.6.20 Type aliases

alias-type:

identifier

unwrapped-alias:

... identifier

6.6.20.1 A type alias assigns an identifier a unique type which is an alias for another type

or a name for a set of enum values.

The grammar for an alias-type does not specify the underlying type. The underlying

type is specified at the time it is declared, see «6.12: Declarations».

6.6.20.2 A type alias shall have the same storage, alignment, size, and default value as its

underlying type.

6.6.20.3 The underlying type of a type alias shall not be never.

6.6.20.4 A type alias that represents an enum type shall have a default value of zero only if

one of the enum values is equal to zero, otherwise its default value is undefined. A

type alias that doesn’t represent an enum type shall have the same default value as

its underlying type.

6.6.20.5 Each type alias (uniquely identified by its identifier) shall be a unique type, even if

it shares its underlying type with another type alias.

6.6.20.6 An unwrapped-alias shall refer to the underlying type of the given type alias, rather

than the type alias itself.

This notably affects the relationship between type aliases and tagged unions. In

28

D
R
A
FT

the following example, union_a and union_b have different storage semantics, the

former being a tagged union of two other tagged unions, and the latter being

reduced to a single tagged union.

type signed = (i8 | i16 | i32 | i64 | int);

type unsigned = (u8 | u16 | u32 | u64 | uint | size);

type union_a = (signed | unsigned);

type union_b = (...signed | ...unsigned);

6.7 Expressions

6.7.1 An expression is a procedure which the implementation may perform to obtain a result,

and possibly cause side-effects (see «5.4.7.1: Program execution»). All expressions have a

defined result type.

6.7.2 Expression types are organized into a number of classes and subclasses of expressions

which define the contexts in which each expression type is applicable.

6.7.3 Some expressions may provide a type hint to other expressions which appear in their

grammar, which those expressions may take advantage of to refine their behavior.

6.7.4 Literals

literal:

integer-literal

floating-literal

rune-literal

string-literal

array-literal

struct-literal

tuple-literal

true

false

null

void

done

6.7.4.1 Literals describe a specific value of an unambiguous type (which may be a flexible

type).

6.7.4.2 The keywords true and false respectively represent the values of the bool type.

6.7.4.3 The null, void, done keywords represent the value of the null, void, done types

respectively.

29

D
R
A
FT

6.7.5 Floating literals

floating-literal: exactly:

nonzero-decimal-digits . decimal-digits decimal-exponentopt floating-suffixopt
nonzero-decimal-digits decimal-exponentopt floating-suffix

0x hex-digits . hex-digits binary-exponent floating-suffixopt
0x hex-digits binary-exponent floating-suffixopt

floating-suffix: one of:

f32 f64

decimal-digits-without-separators: exactly:

decimal-digit decimal-digits-without-separatorsopt

decimal-digits: exactly:

decimal-digit decimal-digitsopt
decimal-digit _ decimal-digits

nonzero-decimal-digits: exactly:

0

nonzero-decimal-digit decimal-digitsopt
nonzero-decimal-digit _ decimal-digits

nonzero-decimal-digit: one of:

1 2 3 4 5 6 7 8 9

hex-digits: exactly:

hex-digit hex-digitsopt
hex-digit _ hex-digits

hex-digit: one of:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

decimal-exponent: exactly:

decimal-exponent-char signopt decimal-digits-without-separators

binary-exponent: exactly:

binary-exponent-char signopt decimal-digits-without-separators

sign: one of:

+ -

decimal-exponent-char: one of:

e E

binary-exponent-char: one of:

p P

30

D
R
A
FT

Floating literals represent an approximation to a real number.

6.7.6 If the floating-suffix is not provided, the result shall be a flexible float. Otherwise, the type

shall refer to the type named by the suffix.

6.7.7 decimal-digits and decimal-digits-without-separators shall be interpreted as base 10. hex-digits

shall be interpreted as base 16, in a case-insensitive manner.

6.7.8 In the first two forms, if the decimal-exponent is provided, the value of the literal shall be

multiplied by 10 to the power of decimal-digits. In the third and fourth forms, the value of

the literal shall be multiplied by 2 to the power of decimal-digits. If sign is provided within

the exponent, it shall assume the given sign.

6.7.9 Integer literals

integer-literal: exactly:

0x hex-digits integer-suffixopt
0o octal-digits integer-suffixopt
0b binary-digits integer-suffixopt
nonzero-decimal-digits positive-decimal-exponentopt integer-suffixopt

octal-digits: exactly:

octal-digit octal-digitsopt
octal-digit _ octal-digits

octal-digit: one of:

0 1 2 3 4 5 6 7

binary-digits: exactly:

binary-digit binary-digitsopt
binary-digit _ binary-digits

binary-digit: one of:

0 1

positive-decimal-exponent:

decimal-exponent-char +opt decimal-digits-without-separators

integer-suffix: one of:

i u z i8 i16 i32 i64 u8 u16 u32 u64

Integer literals represent an integer value.

6.7.10 If the integer-suffix is provided, the type is specified by the suffix. Suffixes i, u, and z shall

respectively refer to the int, uint, and size types; the remainder shall refer to the type

named by the suffix. Otherwise, the type shall be a flexible integer with both the maximum

value and minimum value set to the number provided.

6.7.11 If the number provided isn’t representable as a flexible integer, a diagnostic message shall be

printed and the translation phase shall fail. If an integer-suffix is provided, and the number

31

D
R
A
FT

isn’t representable within the type it specifies, it is truncated towards the least significant

bit.

6.7.12 octal-digits shall be interpreted as base 8. binary-digits shall be interpreted as base 2.

6.7.13 If the decimal-exponent is provided, the value of the integer shall be multiplied by 10 to

the power of decimal-digits.

6.7.14 Rune literals

rune-literal: exactly:

' rune '

rune:

Any character other than \ or '

escape-sequence

escape-sequence: exactly:

named-escape

\x hex-digit hex-digit

\u fourbyte

\U eightbyte

fourbyte: exactly:

hex-digit hex-digit hex-digit hex-digit

eightbyte: exactly:

fourbyte fourbyte

named-escape: one of:

\0 \a \b \f \n \r \t \v \\ \' \"

6.7.14.1 The result type of a rune-literal shall be a flexible rune type whose value is the

value of the rune.

6.7.14.2 If the rune-literal is not an escape-sequence, the value of the rune shall be the

Unicode codepoint representing rune.

6.7.14.3 A rune-literal beginning with \x, \u, or \U shall interpet its value as a Unicode

codepoint specified in its hexadecimal representation by hex-digits.

6.7.14.4 A rune-literal containing a named-escape shall have a value based on the following

chart:

Escape sequence Unicode codepoint Escape sequence Unicode codepoint

\" U+0022 \' U+0027

\0 U+0000 \\ U+005C

\a U+0007 \b U+0008

\f U+000C \n U+000A

\r U+000D \t U+0009

\v U+000B

32

D
R
A
FT

6.7.15 String literals

string-literal:

string-section string-literalopt

string-section: exactly:

" string-charsopt "

` rawstring-charsopt `

string-chars: exactly:

string-char string-charsopt

string-char:

Any character other than \ or "

escape-sequence

rawstring-chars: exactly:

rawstring-char rawstring-charsopt

rawstring-char:

Any character other than `

6.7.15.1 A string-literal expression shall have a result type of const str.

6.7.15.2 If the first form of string-section is used, the string’s data field shall refer to a UTF-8

encoded sequence of Unicode codepoints, ascertained by encoding the sequence

of string-chars given in order, after interpreting escape codes per «6.7.14.17: Rune

literals».

6.7.15.3 If the second form of string-section is used, the string’s data field shall refer to

a UTF-8 encoded sequence of Unicode codepoints, ascertained by encoding the

sequence of rawstring-chars given in order.

6.7.15.4 If a string-literal consists of more than one string-section, the string’s data field

shall refer to a UTF-8 encoded sequence of Unicode codepoints, ascertained by

concatenating the data fields of the string-sections given in order.

6.7.15.5 The length and capacity fields shall be set to the length in octets of the encoded

UTF-8 data.

6.7.16 Array literals

array-literal:

[array-membersopt]

array-members:

expression ,opt

expression ...

expression , array-members

33

D
R
A
FT

6.7.16.1 An array-literal expression produces a value of an array type. The type of each

expression shall be uniform and shall determine the member type of the array value,

and the length of the array type shall be defined by the number of members.

6.7.16.2 If a type hint has been provided to an array literal which is an array type (or a type

alias which represents an array type), the member type will be inferred from this

array type. The initializer expressions for each value among array-members shall

receive this member type as a type hint.

6.7.16.3 The result type of an array-literal is an array type whose length is defined by the

number of array-members. If more than zero array-members are provided, the

array type’s secondary type is the uniform type of each of the array-members.

Otherwise, a type hint which is an array type or slice type must be provided, and

its secondary type is used as the array type’s secondary type.

6.7.16.4 The array-members shall be evaluated in the order in which they appear in the

array-literal, and the Nth item shall provide the value for the Nth array member.

6.7.16.5 If the ... form is used, the result’s array type shall be expandable. If a type hint is

available, it shall not be of a context-defined array type.

6.7.17 Struct literals

struct-literal:

struct { field-values ,opt }

identifier { struct-initializer }

struct-initializer:

field-values ,opt

field-values , ...

...

field-values:

field-value

field-values , field-value

field-value:

name = expression

name : type = expression

struct-literal

6.7.17.1 A struct-literal produces a value of a struct type. The first form is the plain form,

and the second form is the named form.

6.7.17.2 If the plain form is given, the result type shall be a struct type defined by the

field-values, in order, with their identifiers and types explicitly specified. The first

form of field-value shall not be used in such a struct.

6.7.17.3 If the named form is given, the identifier shall identify a type alias (see «6.6.20:

34

D
R
A
FT

Type aliases») which refers to a struct or union type. The result type shall be this

alias type.

6.7.17.4 Each field-value shall specify a field by its name, and assign that field in the result

value to the result of the expression given. The type of the named field, via the

named type alias in the first form, or the given type in the second form, shall

be provided to the initializer expression as a type hint. The field-values shall be

evaluated in the order in which they appear in the struct-literal.

6.7.17.5 If ... is not given, field-values shall be exhaustive, and include every field of the

result type exactly once. Otherwise, a diagnostic message shall be printed and the

translation phase shall abort.

6.7.17.6 If ... is given, any fields of the result type which are not included in field-values

shall be initialized to their default values. Each included field shall only be named

once. If a field is omitted which does not have a default value, a diagnostic message

shall be printed and the translation phase shall abort.

6.7.17.7 If the named type is a union type, the field-values shall be empty and ... provided.

The union type must have a default value.

6.7.17.8 If the struct-literal form of the field-value is given, its fields shall be interpreted as

fields of the parent struct.

The following values are equivalent:

struct { a: int = 10, b: int = 20 }

struct { a: int = 10, struct { b: int = 20 } }

6.7.18 Tuple literals

tuple-literal:

(tuple-items)

tuple-items:

expression , expression ,opt

expression , tuple-items

6.7.18.1 A tuple-literal produces a value of a tuple type. The result type shall be the tuple

type described by the types of its expressions in the order that they appear.

6.7.18.2 If a type hint is available and the hint is a tuple type (or a type alias which represents

a tuple type), the tuple items shall receive as hints the types of the respective tuple

sub-types in the order that they appear.

6.7.18.3 The tuple-items shall be evaluated in the order in which they appear in the

tuple-literal, and the Nth item shall provide the value for the Nth tuple item.

35

D
R
A
FT

6.7.19 Plain expressions

plain-expression:

identifier

literal

nested-expression:

plain-expression

(expression)

6.7.19.1 plain-expression is an expression class which represents its result value "plainly".

In the case of an identifier, the expression produces the value of the identified

object.

6.7.19.2 nested-expression is an expression class provided to allow the programmer to

overcome undesirable associativity between operators.

6.7.20 Allocations

allocation-expression:

alloc (expression)

alloc (expression ...)

alloc (expression , expression)

free (expression)

6.7.20.1 An alloc expression allocates an object at runtime and initializes its value to the

first expression (the initializer). The result type of the initializer provides the

allocation’s object type.

6.7.20.2 The first form is the object allocation form. In this form, if a pointer type is

provided as a type hint, the secondary type of this pointer type shall be provided

to the initializer as its type hint. If a slice type is provided as a type hint, the slice

type shall be provided to the initializer as its type hint. The execution environment

will allocate sufficient storage for the object type and initialize its value using the

initializer expression, then set its result to a pointer to the new object. The object

type must have a defined size which is greater than zero.

6.7.20.3 The second form is the copy allocation form. In this form, if a slice type is provided

as a type hint, the slice type shall be provided to the initializer as its type hint. The

initializer will provide an object type which is either a slice or array type (or an

alias thereof). The execution environment will allocate storage sufficient to store

an array equal in length to the initializer, then copy the initializer’s slice or array

items into this array. The result value shall be set to a slice object whose secondary

type is equal to the secondary type of the initializer’s result type, whose data field

refers to the new array, and whose length and capacity fields are set to the length

of the array.

6.7.20.4 The third form is the slice allocation form. In this form, if a slice type is provided

as a type hint, the slice type shall be provided to the initializer as its type hint.

36

D
R
A
FT

The initializer will provide an object type which is either a slice or array type (or

an alias thereof), and the second expression shall be assignable to the size type,

which shall be provided to it as a type hint.

6.7.20.5 In the slice allocation form, if the initializer doesn’t have an expandable array

type, the second expression provides the desired capacity for a new slice. The

execution environment shall choose a capacity equal to or greater than this term,

then provision an array of that length and set each N th value to the N th value

of the initializer, for each value of N between 0 (inclusive) and the length of the

initializer (exclusive). The result of the allocation-expression shall be a slice whose

data field refers to this array, whose length is equal to the length of the initializer,

and whose capacity is set to the selected capacity.

6.7.20.6 In the slice allocation form, if the array specified by the initializer is expandable, the

second expression shall provide the length of the slice. The execution environment

shall choose a capacity equal to or greater than this value, then for each N th value

of the allocated array from the length of the initializer (L, inclusive) to the specified

length (L′) shall be initialized to the value at L − 1 in the initializer. The length

field of the resulting slice value shall be set to the L′.

The following allocates a slice of length 10 with all values set to zero:

let x: []int = alloc([0...], 10)

6.7.20.7 When alloc is used, if the execution environment is unable to allocate sufficient

storage for the requested type, the execution environment shall print a diagnostic

message and abort. If the type hint is a nullable pointer type, the result type of the

allocation expression shall also be nullable, and null shall be returned instead of

aborting if sufficient storage cannot be provided.

6.7.20.8 A free expression shall discard previously allocated resources, freeing them for

future use. Its result type is void. If the expression’s result type is a pointer type,

and the result value compares unequal to null, then the object referred to by the

pointer shall be freed. If the expression’s result type is a slice type or str, and its

data field is non-null, then the array object referred to by its data field shall be

freed. Otherwise, either the expression’s result value is null, or the expression is

a slice or string whose data field is null, in either case no additional side-effects

shall occur.

6.7.21 Assertions

assertion-expression:

assert (expression)

assert (expression , expression)

abort (expressionopt)

static-assertion-expression:

static assertion-expression

6.7.21.1 An assertion-expression is used to validate an assumption by the programmer by

37

D
R
A
FT

asserting its truth.

6.7.21.2 In the first two forms, the first expression shall be evaluated in the execution

environment. If the expression evalutes to false, a diagnostic message shall be

printed and the execution phase aborted. The expression shall have type bool,

which shall be provided to it as a type hint. The result type of these forms is void.

6.7.21.3 In the second assert form, and in the abort form if present, the final expression

shall have type str, which shall be provided to it as a type hint. The contents of

the string shall be included in the diagnostic message.

6.7.21.4 In the abort form, the execution environment shall unconditionally print a diag-

nostic message and abort. The result type of this form is never.

6.7.21.5 A static-assertion-expression is identical to an assertion-expression, except that the

assertion is run in the translation environment rather than the execution environ-

ment, and the result type is always void.

6.7.22 Calls

call-expression:

postfix-expression (argument-listopt)

argument-list:

expression ,opt

expression ...

expression , argument-list

6.7.22.1 A call-expression shall invoke a function in the execution environment and its

result shall be a value of the type specified by the postfix-expression’s function

result type. This evaluation shall include any necessary side-effects per «5.4.7.1:

Program execution».

6.7.22.2 The result type of the postfix-expression shall be restricted to a set consisting of all

function types, as well as all non-nullable pointer types whose secondary type is

included in this set.

The result type of the postfix-expression can be a function, a pointer to a function,

a pointer to a pointer to a function, and so on.

6.7.22.3 The function invoked shall be the function object the postfix-expression refers to,

selecting that object indirectly via any number of pointer types if appropriate.

6.7.22.4 The argument-list shall be a list of expressions whose types shall be assignable to

the types of the invoked function’s parameters, in the order that they are declared in

the invoked function’s result type. The types specified in the function’s prototype

shall be provided as type hints to each argument expression as appropriate.

6.7.22.5 Trailing optional-parameters may be omitted from the argument-list. Their values

shall be filled inwith the result of evaluating the expression from the optional-parameter.

6.7.22.6 The execution environment shall evaluate the argument-list, ordered such that any

side-effects of evaluating the arguments occur in the order that the arguments are

38

D
R
A
FT

listed, to obtain the parameter values required to invoke the function.

6.7.22.7 If the invoked function uses Hare-style variadism, the argument-list shall provide

zero or more arguments following the last non-variadic parameter, all of which

must be assignable to the type of the variadic parameter.

6.7.22.8 If the final argument uses the ... form, it must occupy the position of a variadic

parameter and be of a slice or array type. The implementation shall interpret this

value as the list of variadic parameters.

6.7.22.9 If the invoked function uses C-style variadism, the function may provide zero or

more arguments following the final parameter.

6.7.22.10 The specific means by which the invoked function assumes control of the execution

environment, and by which the arguments are provided to it, is implementation-

defined.

This is generally provided by the target’s ABI specification.

6.7.23 Measurements

measurement-expression:

align-expression

size-expression

length-expression

offset-expression

align-expression:

align (type)

size-expression:

size (type)

length-expression:

len (expression)

offset-expression:

offset (offset-operand)

offset-operand:

field-access-expression

(offset-operand)

Forward references: «6.7.24: Field access»

6.7.23.1 A measurement-expression is used to measure types and objects. The result type

shall be size.

6.7.23.2 The align expression shall compute the alignment of the specified type. If type is

a type of undefined alignment, a diagnostic message shall be printed and translation

shall abort.

39

D
R
A
FT

6.7.23.3 The size expression shall compute the size of the specified type. If type is a type

of undefined size, a diagnostic message shall be printed and translation shall abort.

6.7.23.4 The len expression shall compute the length of a bounded array, the length

field of a slice object, or the length field of a str, referred to by expression.

If an unbounded array object is given, the translation environment shall print a

diagnostic message and abort.

6.7.23.5 The object used for a length expression shall be the array, slice, or str object the

expression refers to, selecting that object indirectly via any number of non-nullable

pointer types if appropriate.

6.7.23.6 The offset expression shall determine the struct or tuple field which would be

accessed by field-access-expression and compute its offset.

6.7.24 Field access

field-access-expression:

postfix-expression . name

postfix-expression . integer-literal

6.7.24.1 A field-access-expression is used to access fields of «6.6.14: Struct and union

types» and «6.6.15: Tuple types». The result type of the postfix-expression shall

be constrained to a set which includes all struct, union, and tuple types, as well as

non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a struct or union or tuple, a pointer

to a struct or union or tuple, a pointer to a pointer to a struct or union or tuple,

and so on.

6.7.24.2 The object from which the field is selected shall be the struct or union object

the postfix-expression refers to, selecting that object indirectly via any number of

pointer types if appropriate.

6.7.24.3 If the object from which the field is selected is a union, the first form shall be

used. The result of the field-access-expression shall be the union’s storage area

interpreted as the type of the field named by name, and the result type of the

expression shall be the type of the named field.

6.7.24.4 If the object from which the field is selected is a struct, the first form shall be used.

The result of the field-access-expression shall be the value stored in the name field

of the result of the postfix-expression, and the result type of the expression shall be

the type of the named field.

6.7.24.5 If the object fromwhich the field is selected is a tuple, the second form shall be used.

The result of the field-access-expression shall be the N th value stored in the tuple

which is the result of the postfix-expression, and the result type of the expression

shall be the type of the N th value, where N is the value of the integer-literal

interpreted as a flexible integer (without regard to its optional integer-suffix).

6.7.24.6 If the type of the struct object in the first term has the const flag, the result type

shall also have the const flag set, regardless of the flag’s value on the type of the

40

D
R
A
FT

named field.

6.7.25 Indexing

indexing-expression:

postfix-expression [expression]

6.7.25.1 An indexing-expression shall access a specific value of a slice or array type. The

expression shall have a result type of size, which shall be provided to it as a type

hint. The result type of the postfix-expression shall be constrained to a set which

includes all slice and array types whose secondary type has definite size, as well as

non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a slice or array, a pointer to a slice

or array, a pointer to a pointer to a slice or array, and so on.

6.7.25.2 The object from which the field is selected shall be the slice or array object the

postfix-expression refers to, selecting that object indirectly via any number of pointer

types if appropriate.

6.7.25.3 The result type of an indexing-expression is the secondary type of the slice or array

type given by the postfix-expression result type.

6.7.25.4 If the type of the array or slice object in the first term has the const flag, the

result type shall also have the const flag set, regardless of the flag’s value on the

secondary type.

6.7.25.5 The execution environment shall compute the result of expression to obtain N for

selecting the N per the algorithm given in «6.6.17: Slice and array types».

6.7.25.6 The execution environment shall perform a bounds test on the value ofN to ensure

it falls within the acceptable range for the given slice or array type. It shall test

that N < Z , where Z is the length of the bounded array type, or the length field

of the slice, whichever is appropriate. For unbounded array types, the bounds test

shall not occur. If the bounds test fails, a diagnostic message shall be printed and

the execution environment shall abort.

The implementation may perform a bounds test in the translation environment if it

is able, and print a diagnostic message and abort the translation environment if it

fails.

6.7.26 Slicing

slicing-expression:

postfix-expression [expressionopt .. expressionopt]

6.7.26.1 A slicing-expression shall have a result type of slice, which is computed a subset

of a slice or array object. Each optional expressions shall, if present, have a result

type of size, which shall be provided to it as a type hint. The result type of the

postfix-expression shall be constrained to a set which includes all slice and array

41

D
R
A
FT

types, as well as non-nullable pointers whose secondary type is included in the set.

The result type of the postfix-expression can be a slice or array, a pointer to a slice

or array, a pointer to a pointer to a slice or array, and so on.

6.7.26.2 The object from which the field is selected shall be the slice or array object the

postfix-expression refers to, selecting that object indirectly via any number of pointer

types if appropriate.

6.7.26.3 The first expression shall compute value L, and the second shall compute H . If

absent, L = 0 and H = length, where length shall be equal to the length of a

bounded array type or the length of a slice type, represented in either case by the

result of postfix-expression. If H is not specified, and postfix-expression is of an

unbounded array type, the translation environment shall abort.

6.7.26.4 The resulting slice value shall have its data field set from, in the case of an array

type, the address of the array; or in the case of a slice type, the data value of the

source object; plus L×S, where S is the size of the slice or array’s secondary type.

6.7.26.5 The resulting slice value shall have its length field set to H − L, and its capacity

field set to the length of the source object minus L. If the length of the object is

undefined, the capacity shall be set to H − L instead.

6.7.26.6 The execution environment shall perform a bounds test on the values of L and H

to ensure they fall within the acceptable range of the given slice or array type. It

shall test that L < H +1. If postfix-expression isn’t of an unbounded array type, it

shall also test that H < length+ 1. If the bounds test fails, a diagnostic message

shall be printed and the execution environment shall abort.

The implementation may perform a bounds test in the translation environment if it

is able, and print a diagnostic message and abort the translation environment if it

fails.

6.7.26.7 The secondary type of the resulting slice type shall be equivalent to the secondary

type of the slice or array type given by postfix-expression. The resulting slice type

shall inherit the const attribute from this type.

6.7.27 Appending

slice-mutation-expression:

append-expression

insert-expression

delete-expression

append-expression:

staticopt append (object-selector , expression)

staticopt append (object-selector , expression ...)

staticopt append (object-selector , expression , expression)

6.7.27.1 An append-expression shall append some number of values to the slice object

specified by the first term, which shall not be provided a type hint. Valid result

types for object-selector shall either be a slice type whose secondary type has a

42

D
R
A
FT

definite size, or a non-nullable pointer to a valid result type. The selected object

shall be mutable and non-const. The member type of this slice shall be the

append-expression’s member type. The result type of an append-expression shall

be void.

6.7.27.2 In the first form, the type of the second term shall be assignable to the member

type, which shall be provided to it as a type hint.

6.7.27.3 In the second form, the type of the second term shall be a non-expandable bounded

array, a pointer to a non-expandable bounded array, or a slice. In all cases, the

secondary type of the array or slice type shall be the append-expression’s member

type. The second term shall be provided the object type as a type hint.

6.7.27.4 In the third form, the second term shall be an expandable array whose member type

is the append-expression’s member type, and the third term shall be assignable to

size. The second term shall be provided the object type as a type hint, and the

third term shall be provided size as a type hint. The length of the expandable

array shall be given by the third term.

6.7.27.5 The second term of an append expression is used to obtain the append values, of

which there may be none. In the first form, the value of the second term shall be

used as the sole append value. In the second and third forms, the data of the array

or slice given in the second term shall be used as the append values.

6.7.27.6 The second term shall be evaluated after all other terms. If present, the third term

shall be evaluated after the object-selector.

6.7.27.7 The append values shall be obtained after the second term is evaluated. Once

obtained, the append values shall not change as a result of any side-effects.

6.7.27.8 After the append values are obtained, the execution environment shall ensure that

the capacity of the object is at leastN ≥ L1+L2, where L1 is the object length and

L2 is the number of append values, reallocating the underlying storage if necessary.

If sufficient storage cannot be allocated, the execution environment shall print a

diagnostic message and abort. The length field of the slice object shall be set to

L1 + L2.

6.7.27.9 After ensuring sufficient space is available for the new items, the execution envi-

ronment shall assign values of the slice object from index N = L1 (inclusive) to

N = L1 + L2 (exclusive) from each consecutive append value.

6.7.27.10 The static forms shall be equivalent to the non-static forms except that they shall

never cause the underlying slice to be reallocated. If the operation would require

more space than the capacity of the slice provides, the execution environment shall

print a diagnostic message and abort.

43

D
R
A
FT

6.7.28 Inserting

insert-expression:

staticopt insert (insert-operand , expression)

staticopt insert (insert-operand , expression ...)

staticopt insert (insert-operand , expression , expression)

insert-operand:

indexing-expression

(insert-operand)

6.7.28.1 An insert-expression shall insert some number of values into the slice object speci-

fied by the first term, which shall not be provided a type hint. The indexing-expression

specifies both the slice object and an index at which the new values shall be inserted

(the insertion index). The selected object shall be mutable and non-const, and shall

not have an array type. The secondary type of this slice shall be the expression’s

member type. The member type shall have a definite size. The result type of an

insert-expression shall be void.

6.7.28.2 The bounds test described in «6.7.25: Indexing» shall be performed on the first

term, except it shall instead test that N < Z + 1.

6.7.28.3 In the first form, the type of the second term shall be assignable to the member

type, which shall be provided to it as a type hint.

6.7.28.4 In the second form, the type of the second term shall be a non-expandable bounded

array, a pointer to a non-expandable bounded array, or a slice. In all cases, the

secondary type of the array or slice type shall be the insert-expression’s member

type. The second term shall be provided the object type as a type hint.

6.7.28.5 In the third form, the second term shall be an expandable array whose member

type is the insert-expression’s member type, and the third term shall be assignable

to size. The second term shall be provided the object type as a type hint, and the

third term shall be provided size as a type hint. The length of the expandable

array shall be given by the third term.

6.7.28.6 The second term of an insert-expression is used to obtain the insert values, of

which there may be none. In the first form, the value of the second term shall be

used as the sole insert value. In the second and third forms, the data of the array

or slice given in the second term shall be used as the insert values.

6.7.28.7 The second term shall be evaluated after all other terms. If present, the third term

shall be evaluated after the bounds test on the first term is performed.

6.7.28.8 The insert values shall be obtained after the second term is evaluated. Once

obtained, the insert values shall not change as a result of any side-effects.

6.7.28.9 After the insert values are obtained, the execution environment shall ensure that the

capacity of the object is at least N ≥ L1 + L2, where L1 is the object length and

L2 is the number of insert values, reallocating the underlying storage if necessary.

If sufficient storage cannot be allocated, the execution environment shall print a

diagnostic message and abort. The length field of the slice object shall be set to

44

D
R
A
FT

L1 + L2.

6.7.28.10 After ensuring sufficient space is available for the new items, the execution en-

vironment shall copy or move each item N such that from N = I (inclusive) to

N = I + L2 (exclusive), where I is the insertion index, each item is placed at

N + L2.

6.7.28.11 The execution environment shall then assign values of the object slice from index

N = I (inclusive) to N = I + L2 (exclusive) from each consecutive insert value.

6.7.28.12 The static forms shall be equivalent to the non-static forms except that they shall

never cause the underlying slice to be reallocated. If the operation would require

more space than the capacity of the slice provides, the execution environment shall

print a diagnostic message and abort.

6.7.29 Deleting

delete-expression:

staticopt delete (delete-operand)

delete-operand:

indexing-expression

slicing-expression

(insert-operand)

6.7.29.1 A delete-expression shall remove some number of values from the specified slice

object. The selected object shall be mutable and non-const, and shall not have an

array type. The result type of a delete-expression shall be void.

6.7.29.2 Should a indexing-expression be used, it shall specify both the slice object and an

index L, and H shall be set to L+ 1. Should a slicing-expression be used, it shall

specify both the slice object and a range spanning from L toH . In either case, the

appropriate bounds test shall be performed, as described in «6.7.25: Indexing» and

«6.7.26: Slicing».

6.7.29.3 The execution environment shall then copy or move each item N in the slice such

that from N = H (inclusive) to N = Z (exclusive), where Z is the value of the

slice object’s length field, each item is placed atN +L−H . It shall then subtract

H − L from the value of the slice object’s length field.

6.7.29.4 If the static form is used, the slice object’s capacity shall not be modified, and its

data shall not be reallocated. Otherwise, the execution environment may decrease

the slice object’s capacity, re-allocating its data if necessary. This re-allocation,

if performed, shall not fail. The slice object shall be updated to reflect the new

capacity if necessary. If a non-static delete-expression sets the value of the slice

object’s length field to zero, the capacity field’s value shall also be set to zero,

and the array object referred to by its data field shall be freed.

45

D
R
A
FT

6.7.30 Error checking

error-checking-expression:

postfix-expression ?

postfix-expression !

The ? form of error-checking-expression is an error propagation expression. The !

form of error-checking-expression is an error assertion expression. In both forms,

the postfix-expression shall have a result type which is a tagged union type which

has a type with the error flag set among its member types.

6.7.30.1 The result type of an error checking expression is a tagged union whose member

types are the subset of the original type which do not include the error flag; or, if

there is only one such type, that type without a tagged union; or, if there are no

such types, never.

6.7.30.2 An error checking expression shall perform an error test which checks if the result

value of the postfix-expression is of a non-error type. If so, that value shall be the

result of the error checking expression.

6.7.30.3 In an error propagation expression, if the error test fails, the error type shall be

assignable to the current function’s result type, and that value shall be returned

from the function. This form shall not be used within the expression tree formed

by a defer-expression.

6.7.30.4 In an error assertion expression, if the error test fails, the execution environment

shall print a diagnostic message and abort.

6.7.30.5 If a type hint is provided to an error checking expression, the same type hint shall

be provided to its postfix-expression.

6.7.31 Postfix expressions

postfix-expression:

nested-expression

call-expression

field-access-expression

indexing-expression

slicing-expression

error-checking-expression

object-selector:

identifier

indexing-expression

field-access-expression

(object-selector)

6.7.31.1 postfix-expression is an expression class for expressions whose operators use postfix

notation.

46

D
R
A
FT

6.7.31.2 object-selector defines a subset of postfix expressions which refer to objects, for use

in other parts of the grammar.

6.7.32 Variadic expressions

variadic-expression:

vastart ()

vaarg (object-selector)

vaend (object-selector)

6.7.32.1 Variadic expressions are provided for compatibility with the C programming lan-

guage as specified by ISO/IEC 9899. Implementation support is optional: imple-

mentations which do not provide CABI compatibility must parse these expressions,

print a diagnostic message, and abort.

These expressions are used only for C compatibility. "Hare-style" variadism is

handled separately.

6.7.32.2 The vastart expression shall have a result type of valist, and may only be used

within a function body which uses C-style variadism. It will initialize a valist

in an implementation-defined manner, such that the first use of vaarg on the new

object would return the first variadic parameter.

6.7.32.3 The vaarg expression accepts an object-selector which must be of the valist type.

The expression shall also be provided a type hint, which shall have a defined size

and alignment.

6.7.32.4 When the vaarg expression is evaluated, the following conditions (runtime con-

straints) must hold:

1. Any previous evaluation of a vaarg expression on the same object-selector didn’t violate any

runtime constraints

2. There exists a variadic parameter that has yet to be consumed by the object-selector

3. The type of the next variadic parameter and the type hint have the same size and alignment

4. The type of the next variadic parameter is assignable to the type hint (ignoring type flags), or

the type of the next variadic parameter and the type hint are both integer types, or the type

of the next variadic parameter is either a pointer type or the null type and the type hint is a

pointer type, or either the type of the next variadic parameter or the type hint has a size of

zero

6.7.32.5 If no runtime constraints are violated, the result of the vaarg expression shall be

the next variadic parameter from the valist object, and the parameter shall be con-

sumed by the object such that another vaarg expression on the same object-selector

would yield the successive variadic parameter, if one exists. If any runtime con-

straint is violated, behavior of the vaarg expression is undefined.

6.7.32.6 The vaend expression accepts an object-selector which must be of the valist type.

The object must have previously been initialized with vastart. The implemen-

47

D
R
A
FT

tation shall finalize the valist object in an implementation-defined manner. Any

further evaluated vaarg expression on the object is invalid, unless the object is first

re-initialized with vastart. The result type of this expression is void.

6.7.33 Builtin expressions

builtin-expression:

allocation-expression

assertion-expression

measurement-expression

slice-mutation-expression

postfix-expression

static-assertion-expression

variadic-expression

6.7.34 Unary expressions

unary-expression:

builtin-expression

compound-expression

match-expression

switch-expression

unary-operator unary-expression

unary-operator: one of:

- ~ ! * &

6.7.34.1 A unary expression applies a unary-operator to a single value.

6.7.34.2 The - operator shall perform aunary negation operation. If the type of unary-expression

is a flexible integer, the result type shall be a flexible integer whose minimum value

is the result of negating the operand type’s maximum value, and whose maxi-

mum value is the result of negating the operand type’s minimum value. If the

resulting flexible integer type isn’t representable, a diagnostic message shall be

printed and the translation environment shall abort. Otherwise, if the type of

unary-expression isn’t a flexible integer, the result type shall be equivalent to the

type of unary-expression, which shall be of a numeric type.

6.7.34.3 The ~ operator shall perform a bitwise not operation, inverting each bit of the value.

Its result type shall be equivalent to the type of unary-expression, which shall be

of an integer type.

6.7.34.4 The ! operator shall perform a logical not operation. The result type, and the type

of unary-expression, shall both be bool. If the unary-expression is true, the result

shall be false, and vice-versa.

6.7.34.5 The * operator shall dereference a pointer, and return the object it references.

The type of unary-expression shall be a non-nullable pointer type, and the result

type shall be the pointer’s secondary type, which shall have a defined size. On

48

D
R
A
FT

implementations which don’t support unaligned memory accesses, behavior is

undefined if the address stored within the pointer isn’t a multiple of the alignment

of the pointer’s secondary type.

6.7.34.6 The & operator shall take the address of an object. The result type shall be a pointer

whose secondary type is the type of the object selected by the unary-expression.

If the unary-expression is not an object-selector, the ensuing pointer shall only be

valid within the current function.

6.7.34.7 When the & operator is used, if the unary-expression is provided a type hint which

is a pointer type whose secondary type’s class isn’t opaque, and the selected object

has a flexible type, then the «6.11: Flexible type promotion algorithm» shall be

applied to the flexible type and the type hint’s secondary type.

6.7.34.8 When the & operator is used, if the unary-expression is provided a type hint which is

a pointer type, and the selected object doesn’t have a flexible type, then the object’s

type and the type hint’s secondary type shall be tested for compatibility. In this

test, each type which is a type alias shall be recursively replaced with its underlying

type until it’s no longer a type alias. If the resulting types are equivalent, then the

result type of the object is changed to the type hint’s secondary type.

The following table is informative.

Operator Meaning

- Negation

~ Bitwise not

! Logical not

* Dereference pointer

& Take address

6.7.35 Casts, type assertions, and type tests

cast-expression:

unary-expression

cast-expression : type

cast-expression as nullable-type

cast-expression is nullable-type

nullable-type:

type

null

6.7.35.1 A cast expression interrogates or converts the type of an object. The first form

illustrates the precedence. The second and third forms (: and as) have a result type

specified by the type; and the fourth form (is) has a result type of bool.

6.7.35.2 Each form shall provide the specified type as a type hint to its cast-expression.

6.7.35.3 The second form is a type cast, and shall not fail. It shall cause the execution

environment to convert or interpret the value as another type.

6.7.35.4 A type which may be cast to another type is considered castable to that type.

49

D
R
A
FT

6.7.35.5 All types are castable to themselves. The set of other types which are castable to a

given type are given by the following table:

Result Castable from

Any numeric type Floating types

Any numeric type or enum type Integer and enum types

Any pointer type or the null type uintptr

Any pointer type, uintptr, or the null type Any pointer type

Any array or slice type Array types

Any slice type or pointer to an array type Slice types

Any type the underlying type of the source could cast to Type aliases

Any type alias with an underlying type the source may be cast to Any type

Any integer type rune

rune Any integer type

Any pointer type or uintptr The null type

See below Tagged unions

Tagged unions See below

See below Flexible types

6.7.35.6 Tagged union types are mutually castable with any type which is found among its

members, including otherwise non-castable types and other tagged union types.

6.7.35.7 When a flexible type is cast to another type, the «6.11: Flexible type promotion

algorithm» shall be applied to them, and the flexible type shall be castable to the

other type if the promotion succeeds.

6.7.35.8 When an unsigned integer type is cast to an integer with an equal or greater width,

all bits more significant than the old value’s most significant bit shall be set to zero.

6.7.35.9 When a signed integer type is cast to an integer with an equal or greater width, all

bits more significant than the old value’s most significant bit shall be set to the old

value’s most significant bit.

6.7.35.10 When an integer type is cast to an integer with a smaller width, it shall be truncated

towards the least significant bit.

6.7.35.11 The result of any cast involving a floating point type is implementation-defined.

6.7.35.12 Casting a pointer type to uintptr, and then back to the pointer type, shall yield

the same pointer. Likewise, casting the null type to a uintptr and then back to a

pointer type shall yield null.

However, casting uintptr to a smaller integer type and back again may truncate

towards the least significant bit and is not guaranteed to yield the same pointer.

6.7.35.13 The const flag shall not affect the rules for casting one type to another. The same

holds for the error flag as well.

6.7.35.14 The third form is a type assertion. In this form, cast-expression shall be of a tagged

union type or a nullable pointer type.

In the former case, nullable-type shall be type and shall be one of constituent types

of type of that tagged union. The cast-expression shall be computed, and if the tag

does not match type, a diagnostic message shall be printed and the environment

shall abort. Otherwise, the result type is type.

50

D
R
A
FT

In the latter case nullable-type shall either be a type that is a nullable pointer type or

null. If it is null and the value of cast-expression does not equal null, a diagnostic

message shall be printed and the environment shall abort. If nullable-type is not

null and the value of cast-expression equals null, a diagnostic message shall be

printed and the environment shall abort. The result type of a type assertion with

null as nullable-type shall be the null type. The result type of other type assertions

shall be type.

6.7.35.15 The fourth form is a type test. In this form, The result type is bool, and shall be

true if and only if the type assertion from cast-expression to nullable-type would

succeed, or false otherwise.

6.7.36 Multiplicative arithmetic

multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

6.7.36.1 A multiplicative-expression multiplies (*), divides (/), or obtains the remainder

between (%) two expressions. The first form illustrates the precedence. The

operands and result type shall be subject to the «6.8: Type promotion» rules.

6.7.36.2 In the case of division or modulus, the first term is the dividend, and the second

term is the divisor. The result of modulus on signed operands shall have the same

sign as the dividend.

6.7.36.3 When evaluating a division or modulus operation in the translation environment, if

the divisor has an integer type and is equal to zero, or if the result type is a signed

integer type and the result of the operation wouldn’t be representable in the result

type, a diagnostic message shall be printed and the translation phase shall abort.

6.7.36.4 When evaluating a division or modulus operation in the execution environment, if

the divisior has an integer type and is equal to zero, or if the result type is a signed

integer type and the result of the operation wouldn’t be representable in the result

type, behavior is undefined.

6.7.36.5 A modulus (%) operation shall be performed with operands of integer types only.

6.7.36.6 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

6.7.37 Additive arithmetic

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

51

D
R
A
FT

6.7.37.1 An additive-expression adds (+) two operands, or subtracts (-) one from another.

The first form illustrates the precedence. The operands and result type shall be

subject to the «6.8: Type promotion» rules.

6.7.37.2 In the case of subtraction, the first term is the minuend, and the second term is the

subtrahend.

6.7.37.3 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

6.7.38 Bit shifting arithmetic

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

6.7.38.1 A shift-expression performs a bitwise left-shift (<<) or right-shift (>>). The first

form illustrates the precedence. The result type shall be the type of the first operand.

Both operands shall be integer types.

6.7.38.2 The result of shift-expression << N , where N is a non-flexible signed integer,

shall be equivalent to the result of shift-expression >> -N , and vice versa.

6.7.38.3 shift-expression << N , where N is non-negative, shall shift each bit towards

the most significant bit N places, and set the least significant N bits to zero. The

N most significant bits shall be silently discarded. If N is greater than or equal to

the width of the integer type, the result is implementation-defined.

6.7.38.4 shift-expression >> N , where N is non-negative, shall shift each bit towards

the least significant bit N places. The most significant bits shall be set to either

zero or one depending on the signedness of shift-expression: If it is signed, then

the N most significant bits shall be set to the value of N ’s most significant bit.

If it unsigned, then the N most significant bits shall be set to zero. The N least

significant bits shall be silently discarded. IfN is greater than or equal to the width

of the integer type, the result is implementation-defined.

6.7.38.5 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

52

D
R
A
FT

6.7.39 Bitwise arithmetic

and-expression:

shift-expression

and-expression & shift-expression

exclusive-or-expression:

and-expression

exclusive-or-expression ˆ and-expression

inclusive-or-expression:

exclusive-or-expression

inclusive-or-expression | exclusive-or-expression

6.7.39.1 An and-expression performs a bitwise and operation. Each bit of the result is set

only if the corresponding bit is set in both of the operands.

6.7.39.2 An exclusive-or-expression performs a bitwise exclusive or operation. Each bit of

the result is set only if the corresponding bit is set in one of the operands, and not

set in the other operand.

6.7.39.3 An inclusive-or-expression performs a bitwise inclusive or operation. Each bit of

the result is set only if the corresponding bit is set in one or both of the operands.

6.7.39.4 The operands and result type shall be subject to the «6.8: Type promotion» rules.

6.7.39.5 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

6.7.40 Logical comparisons

comparison-expression:

inclusive-or-expression

comparison-expression < inclusive-or-expression

comparison-expression > inclusive-or-expression

comparison-expression <= inclusive-or-expression

comparison-expression >= inclusive-or-expression

equality-expression:

comparison-expression

equality-expression == comparison-expression

equality-expression != comparison-expression

6.7.40.1 A comparison-expression determines which operand is lesser than (<), greater than

(>), less than or equal to (<=), or greater than or equal to (>=) the other. The

operands shall be numeric, and are subject to the «6.8: Type promotion» rules.

The result type shall be bool.

6.7.40.2 The result of the < operator shall be true if the first operand is less than the second

operand and false otherwise.

53

D
R
A
FT

6.7.40.3 The result of the > operator shall be true if the first operand is greater than the

second operand and false otherwise.

6.7.40.4 The result of the <= operator shall be true if the first operand is less than or equal

to second operand and false otherwise.

6.7.40.5 The result of the >= operator shall be true if the first operand is greater than or

equal to second operand and false otherwise.

6.7.40.6 An equality-expression determines if two operands are equal to one another. The

result type is bool. If the types of the == or != operators are numeric, they shall be

subject to «6.8: Type promotion». Otherwise, each operand must be of the same

type, and that type must both be either str, bool, rune, or a pointer type.

6.7.40.7 The result of the == operator shall be true if the first operand is equal to second

operand in value, and false otherwise.

6.7.40.8 The result of the != operator shall be true if the first operand is not equal to second

operand in value, and false otherwise.

6.7.40.9 The method in which two floating point values are compared or check for equality

is implementation-defined. Two floating point values with the same representation

may compare unequal.

6.7.40.10 Two str objects shall be equal if both strings have the same length and octets.

Otherwise, they shall not be equal.

6.7.40.11 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

6.7.41 Logical arithmetic

logical-and-expression:

equality-expression

logical-and-expression && equality-expression

logical-xor-expression:

logical-and-expression

logical-xor-expression ^^ logical-and-expression

logical-or-expression:

logical-xor-expression

logical-or-expression || logical-xor-expression

6.7.41.1 For all cases of logical arithmetic, both terms shall be of the bool type, and the

result type shall be bool.

6.7.41.2 && shall be a logical and operation. The result shall be true if both terms are true,

and false otherwise.

6.7.41.3 ^^ shall be a logical exclusive or operation. The result shall be true if exactly one

of the terms is true, and false otherwise.

54

D
R
A
FT

6.7.41.4 || shall be a logical inclusive or operation. The result shall be true if either term

is true, and false otherwise.

6.7.41.5 If the first termof logical-and-expression is false, or the first termof logical-or-expression

is true, the implementation shall ensure that the side-effects of the second term do

not occur in the execution environment.

6.7.42 If expressions

if-expression:

if conditional-branch

if conditional-branch else expression

conditional-branch:

(expression) expression

6.7.42.1 An if-expression chooses which, if any, expression to evaluate based on a logical

criteria. In conditional-branch, the result type of the first expression shall be bool.

6.7.42.2 When executing a conditional-branch, the implementation shall evaluate the first

expression (the condition), and if true, the implementation shall execute the

corresponding second expression (the true branch), ensuring that all side-effects

occur. If the condition is false, the true branch shall not be executed and shall not

cause side-effects.

6.7.42.3 In the second form, the conditional-branch shall be executed. If the condition is

false, the expression (the false branch) shall be executed, ensuring that all side-

effects occur. If the condition is true, the false branch shall not be executed and

shall not cause side-effects. The result value shall be selected from the result of the

branch which is executed. If the if-expression is provided a type hint, the executed

branch shall receive it as a type hint.

6.7.42.4 An else is associated with the inner-most if-expression which is allowed by the

syntax.

6.7.42.5 The first form shall behave semantically as though the second form were used with

void as the false branch.

6.7.42.6 If a type hint is provided and all branches are assignable to that type, the result

type shall be the type given by the type hint. Otherwise, the result type shall be the

«6.10: Result type reduction algorithm» applied to the result types of all branches.

55

D
R
A
FT

6.7.43 For loops

for-loop:

for labelopt (for-predicate) expression

for-predicate:

iterable-binding

expression

binding-list ; expression

expression ; expression

binding-list ; expression ; expression

iterable-binding:

iterable-binding-left .. expression

iterable-binding-left & .. expression

iterable-binding-left => expression

iterable-binding-left:

const binding-name

const binding-name : type

let binding-name

let binding-name : type

label:

: name

Forward references: «6.7.47: Binding expressions»

6.7.43.1 A for-loop executes its expression, the body of the loop, zero or more times, so

long as the condition is true.

6.7.43.2 An iterable-binding shall cause one or more objects to become available in the

for-loop’s scope. Each object shall be identified by its name.

6.7.43.3 The first form of an iterable-binding is a for-each value loop. The second form is

a for-each reference loop. The third form is a for-each iterator loop. Other forms

of the for-predicate are for accumulator loops.

6.7.43.4 In the second form, for-predicate specifies the condition with its expression. In

the third form, the binding-list is the binding and the expression is the condition.

In the fourth form, the first expression is the condition, and the second expression

is the afterthought. In the fifth form, the binding-list is the binding, and the two

expressions are respectively the condition and afterthought.

6.7.43.5 The type in iterable-binding-left, if present, is provided as a type hint for the

expression and indicates the type of the binding object.

6.7.43.6 In for-each value and for-each reference loops, the result type of the expression

shall be an bounded array or a slice, selecting that object indirectly via any number

of non-nullable pointer types if appropriate. In for-each iterator loops, the result

type shall be a tagged union with one done type, or an alias thereof, among its

56

D
R
A
FT

member types.

6.7.43.7 In for-each reference loops, the tuple unpacking form shall not be used and the

type, if present, shall be a pointer type.

6.7.43.8 If the iterable-binding-left is supplied a type, the expression shall be provided a

type hint. In a for-each value loop, the type hint shall be an unbounded array type

whose secondary type is the type. In a for-each pointer loop, the type hint shall be

an unbounded array type whose secondary type is the secondary type of the type.

In a for-each iterator loop, the type hint shall be a tagged union type containing

both a done member, as well as the constituent types of type if it’s a tagged union

type, or type otherwise.

6.7.43.9 The type that will ultimately be assigned in an iterable-binding is, in the first form,

the secondary type of the slice-array-type. In the second form it shall be a pointer

whose secondary type is the secondary type of the slice-array-type. In the third

form it shall the subset of the tagged union that doesn’t contain any done types; or,

if there is just one type left, it shall be that type without the tagged union. If no

type was provided, this shall be the type of the object; or, if the type was provided

and this type is not assignable to the type, a diagnostic message shall be printed

and the translation phase shall abort.

6.7.43.10 The implementation shall establish a new scope for the expression, then, if present,

it shall evaluate the binding in this scope. The implementation shall then evaluate

the condition. If it is true, the expression shall be evaluated and all of its side-

effects shall occur; this evaluation is an iteration. When the iteration completes,

the implementation shall re-evaluate the condition and, if true, perform another

iteration.

6.7.43.11 The result type of the condition in for accumulator loops shall be bool, and this

shall be provided as a type hint.

6.7.43.12 If, in for accumulator loops, the condition uses the «6.9: Translation compatible

expression subset», and its result value is true, and the scope of the for-loop is

never terminated as a side-effect of a break or yield expression, the result type of

the for-loop shall be never, otherwise, the result type shall be void.

6.7.43.13 In for accumulator loops, the afterthought shall not have a result type whose error

flag is set, nor shall it have a tagged union result type which has a type with the

error flag set among its members.

6.7.43.14 In for accumulator loops, when an iteration completes, the implementation shall

evaluate the afterthought, if present, before re-evaluating the condition, which is

true when the result of the condition expression is true.

6.7.43.15 In every iteration a for-each value loop, the implementation shall assign the N th

member of the result value of the iterable-binding’s expression to the binding object.

In for-each reference loops, the implementation shall assign a pointer referencing

the N th value. N starts at 0 and incremented after every iteration. The condition

N < L, where L is the length of the iterable-binding’s expression result (which is

a slice-array-type), is checked before the assignment. The expression is evaluated

once.

6.7.43.16 Behavior when using insert, append and delete on a slice currently being iterated

57

D
R
A
FT

over is undefined. If implementations can prove this undefined behavior during the

translation phase, a diagnostic message shall be printed and the translation phase

shall abort.

Because the behavior when using these functions while iterating over the same slice

is unexpected, implementations are strongly encouraged to prevent such misuse

during the translation phase or at runtime.

6.7.43.17 In for-each iterator loops, the expression shall be evaluated before each iteration.

The condition is only true if the expressions’s result value’s tag is equal to the

type ID of the done type (or aliases thereof). After the condition is evaluated, the

result of the expression shall be assigned to the binding object, but only when the

condition was true.

6.7.43.18 If a label is present, the established scope shall be labelled with its name.

6.7.43.19 The static and def forms of the binding-list shall not be used in the for-predicate.

6.7.44 Switch expressions

switch-expression:

switch labelopt (expression) { switch-cases }

switch-cases:

switch-case switch-casesopt

switch-case:

case case-options => expression-list

case => expression-list

case-options:

expression ,opt

expression , case-options

Forward references: «6.7.49: Compound expressions»

6.7.44.1 A switch expression evaluates a value (expression, the switching expression), then

compares it with a number of switch-cases, taking whichever branch compares

equal to the value. The switching expression’s result type must either be of an

integer type or be a str, bool, rune, a flexible rune type, or a pointer type.

6.7.44.2 Each of the case-options specifies a value to compare with, given by expression.

This expression shall be limited to the «6.9: Translation compatible expression

subset», and its result type shall be assignable to the result type of the switching

expression.

6.7.44.3 Each switch-case introduces an implicit compound-expression which the provided

expression-list gives the expressions of. The implementation shall evaluate the

expression-list of the corresponding switch-case if any of the case-options is equal

to the switching expression’s result, setting the result of the overall switch expression

to the result of the selected switch-case.

58

D
R
A
FT

As such, the appropriate way to set the result of a switch expression is with a

yield-expression. The semantics of defer-expression, bindings, and so on, are also

implicated.

6.7.44.4 If the switch-expression has a label, its name shall be used to label the scope of

each case’s implicitly introduced compound-expression.

6.7.44.5 The form of switch-case without case-options indicates any case which is not

selected by the other cases. Only one case of this form shall appear in the switch

expression.

6.7.44.6 The switch cases shall be exhaustive, meaning that every possible value of the

switching expression is accounted for by a switch-case. It shall also be precisely

exhaustive: no two cases shall select for the same value.

6.7.44.7 If the value of the switching expression doesn’t compare equal to any of the

switch-cases, a diagnostic message shall be printed and the execution environment

shall abort.

This isn’t possible under normal circumstances, but certain operations such as

invalid casts can cause this to occur.

6.7.44.8 The implementation shall ensure that side-effects of the switch value expression

occur before those of the selected case, and that side-effects of non-selected cases

do not occur.

6.7.44.9 If a type hint is provided, each branch shall receive it as a type hint.

6.7.44.10 If a type hint is provided and all branches are assignable to that type, the result

type shall be the type given by the type hint. Otherwise, the result type shall be the

«6.10: Result type reduction algorithm» applied to the result types of all branches.

6.7.45 Match expressions

match-expression:

match labelopt (expression) { match-cases }

match-cases:

match-case match-casesopt

match-case:

case let name : type => expression-list

case nullable-type => expression-list

case => expression-list

Forward references: «6.7.49: Compound expressions», «6.7.47: Binding expres-

sions»

6.7.45.1 A match expression evaluates a value (expression, the matching expression), then

selects and evaluates another expression based on its result type. The result type

of the matching expression must be a tagged union or nullable pointer type, or an

alias of either.

59

D
R
A
FT

6.7.45.2 If the matching expression has a tagged union type, each match-case shall specify a

type which is either a member of that tagged union, or another tagged union which

supports a subset of the matching expression’s type, or a type alias which refers to

a qualifying type.

6.7.45.3 If the matching expression has a nullable pointer type, one match case shall be

null, and another shall be the equivalent non-nullable pointer type, or a type alias

which refers to a qualifying type.

6.7.45.4 Each match-case introduces an implicit compound-expression which the provided

expression-list gives the expressions of. The implementation shall evaluate the

expression-list of the corresponding match-case if the value of the matching ex-

pression is of the type specified by thismatch case, or can be assigned from it, setting

the result of the overall match expression to the result of the selected match-case.

As such, the appropriate way to set the result of a match expression is with a

yield-expression. The semantics of defer-expression, bindings, and so on, are also

implicated.

6.7.45.5 If the match-expression has a label, its name shall be used to label the scope of

each case’s implicitly introduced compound-expression.

6.7.45.6 The form of match-case without a binding or nullable-type indicates any case which

is not selected by the other cases. Only one case of this form shall appear in the

match expression.

6.7.45.7 The first form of match-case, if selected, shall cause the implementation to cast the

match expression to the selected type and assign the resulting value to name. It

shall insert this binding into the scope of the implicit compound-expression of the

selected case.

6.7.45.8 The match cases shall be exhaustive, meaning that every possible type of the

matching expression is accounted for by a match-case. It shall also be precisely

exhaustive: no two cases shall select for the same type.

6.7.45.9 If the type of the matching expression isn’t accounted for by any of the match-cases,

a diagnostic message shall be printed and the execution environment shall abort.

This isn’t possible under normal circumstances, but certain operations such as

invalid casts can cause this to occur.

6.7.45.10 The implementation shall ensure that side-effects of the match value expression

occur before those of the selected case, and that side-effects of non-selected cases

do not occur.

6.7.45.11 If a type hint is provided, each branch shall receive it as a type hint.

6.7.45.12 If a type hint is provided and all branches are assignable to that type, the result

type shall be the type given by the type hint. Otherwise, the result type shall be the

«6.10: Result type reduction algorithm» applied to the result types of all branches.

60

D
R
A
FT

6.7.46 Assignment

assignment:

assignment-target assignment-op expression

slicing-assignment-target = expression

assignment-target:

object-selector

indirect-assignment-target

indirect-assignment-target:

* unary-expression

(indirect-assignment-target)

slicing-assignment-target:

slicing-expression

(slicing-assignment-target)

assignment-op: one of:

= += -= *= /= %= <<= >>= &= |= ^= &&= ||= ^^=

Forward references: «6.7.47: Binding expressions»

6.7.46.1 An assignment expression shall cause the object given by assignment-target or

slicing-assignment-target to be assigned a new value based on the value given by

the second term. The type of the object shall be provided as a type hint to the

secondary expression. The result type of an assignment shall be void.

6.7.46.2 If the assignment-op is =, the assignment-target shall be assigned the value given

by the second term. Otherwise, the assignment e1 op= e2 shall be equivalent to

the assignment e1 = e1 + e2, but the side-effects of e1 shall only occur once.

6.7.46.3 In the object-selector form, the object-selector selects the object to be modified.

The type of this object shall not be a const type.

6.7.46.4 In the indirect-assignment-target form, the unary-expression shall have a result of

a non-nullable, non-const pointer type, and the object which is assigned shall be

the secondary object to which the pointer object refers. The second term shall be

assignable to the pointer’s secondary type.

6.7.46.5 In the slicing-assignment-target form, the expression shall be either of a slice type

and have a length equal to the slice given by slicing-expression, or an expandable

array. The first term shall not be of a const type. The contents of the slice or

expandable array given by the second term shall be copied into the slice given by

the first term.

6.7.46.6 The type of the object being assigned to shall have definite size and alignment.

6.7.46.7 The second term shall be assignable to the object. Assignability rules are different

than castability rules. All types are assignable to themselves. The set of other

types which are assignable to a given type are given by the following table:

61

D
R
A
FT

Object type May be assigned from

Mutable type Constant types assignable to the object type

Signed integer types Signed integer types of equal or lower width

Unsigned integer types Unsigned integer types of equal or lower width

Floating point types Any floating point type of equal or lower width

Nullable pointer types Non-nullable pointer type of the same secondary

Nullable pointer types The null type

Slice types Array type of the same secondary type and definite

Slice types Pointer to array type of the same secondary type

[]opaque Slice types

Array types of undefined size Array types of defined size

Tagged union types See notes

Type aliases Any type assignable to the alias’ underlying type

Any type the alias’ underlying type is assignable to Type aliases

void Any type

* opaque Any non-nullable pointer type

nullable * opaque Any pointer type

Pointers to array types See notes

See notes Pointer to struct type

Any type never

The implementation shall perform any necessary conversion from the source type

to the destination type.

6.7.46.8 Pointers to array types are mutually assignable if their secondary types are mutually

assignable.

6.7.46.9 A pointer to a type is assignable to a pointer to a secondary type if the primary

type is a struct type which contains the secondary type at offset zero, or if the type

at offset zero is a type which would be assignable under these rules.

6.7.46.10 Tagged union types may be assigned from any of their constituent types. Tagged

unions may also be assigned from any type which is assignable to exactly one of

its constituent types. Additionally, tagged unions may be assigned from any other

tagged union type, provided that the set of constituent types of the destination type

is a superset of the set of constituent types of the source type.

6.7.46.11 const types have the same assignability rules as the equivalent non-const type.

Types with the error flag set have the same assignability rules as the equivalent

type with the flag unset.

6.7.46.12 If at least one of the types is flexible, the «6.11: Flexible type promotion algorithm»

shall be applied to them, and they shall be considered mutually assignable if the

promotion succeeds.

In the context of an assignment expression, «6.7.46.2: Assignment» prevents the

modification of objects with a const type. However, the assignability rules are

referred to in many other contexts throughout the specification, and in these con-

texts, unless otherwise specified, non-const types are assignable to const types.

For example, a binding which specifies a const type may use a non-const type for

its expression.

62

D
R
A
FT

6.7.46.13 The implementation shall ensure that any side-effects of the first term shall occur

before side-effects of the second term.

6.7.47 Binding expressions

binding-list:

staticopt let bindings

staticopt const bindings

def bindings

bindings:

binding ,opt

binding , bindings

binding:

binding-name = expression

binding-name : type = expression

binding-name:

name

(tuple-binding-names)

tuple-binding-names:

tuple-binding-name , tuple-binding-name ,opt

tuple-binding-name , tuple-binding-names

tuple-binding-name:

name
_

6.7.47.1 A binding-list shall cause one or more objects to become available in the present

scope. Each object shall be identified by its name, and shall have its initial value

set to the result of the expression. The result type of a binding list expression is

void.

6.7.47.2 The names in a binding shall be inserted into the present scope immediately after

the binding’s expression is evaluated and its result has been obtained. They shall

be inserted one after another, in the order that they appear in the program source.

The order in which binding-names are inserted into the scope is only relevant when

the same name appears more than once. In this case, the later binding shadows

the earlier binding, as described in «6.7.47.9: Binding expressions».

Because the binding is only inserted into the scope when the binding-list is evalu-

ated, it isn’t visible to any expressions which lexically precede it, even if they reside

in the same scope.

6.7.47.3 Each binding’s expression shall be evaluated in the order that they appear in the

program source.

63

D
R
A
FT

6.7.47.4 In the first form of binding, the type of the object shall be equivalent to the result

type of the expression. In the second form, the type shall be as indicated, and the

result type of the expression shall be assignable to this type. In this second form,

the type specified is used as a type hint for the expression.

6.7.47.5 The second form of binding-name is the tuple unpacking form, and in this case,

the expression’s result type shall be a tuple type with a number of values equal to

the number of times tuple-binding-name is given. If a type is supplied, it shall be

provided to the expression as a type hint, and it shall specify a tuple type which the

expression’s result type is assignable to. The implementation shall create separate

bindings for each name, of the type of the corresponding tuple value, and initialize

them to that value from the tuple. If any tuple-binding-name is _ (an underscore),

a binding for that tuple value shall not be created.

6.7.47.6 If the const form is used, the type of each binding shall be modified to include the

const flag. If the let form is used, the type of each binding which uses the first

form of binding shall be modified to omit the const flag. In either case, the type

of each binding shall have a definite size. If the type of a binding which uses the

const or let form is a flexible type, it shall first be lowered to its default type.

6.7.47.7 If the static form is used, the objects shall be allocated statically, such that

they are only initialized once and their previous value, accounting for any later

mutations, is preserved each time the binding expression is encountered, including

across repeated or recursive calls to the enclosing function. In this case, the

initializer must use the «6.9: Translation compatible expression subset», and shall

be evaluated in the translation environment.

6.7.47.8 If the def form is used, the objects shall not have any storage allocated for them

in the execution environment. References to bindings created using this form shall

be equivalent to references to the expression associated with them, with a cast to

type inserted if the second form of binding is used. The tuple unpacking form

of binding shall not be used with this form. The expression associated with each

binding shall be limited to the «6.9: Translation compatible expression subset»,

and shall be evaluated in the translation environment.

6.7.47.9 If a given name already refers to an object visible in the present scope, the new

binding shall shadow the earlier binding, causing any references to the name which

lexically follow this binding-list within the present scope to resolve to the newly

bound object.

6.7.48 Defer expressions

defer-expression:

defer expression

6.7.48.1 A defer-expression causes another expression to be deferred until the current scope

terminates. The result type is void.

6.7.48.2 The expression shall not have a result type whose error flag is set, nor shall it

have a tagged union result type which has a type with the error flag set among its

64

D
R
A
FT

members.

6.7.48.3 The implementation shall cause the expression to be evaluated upon the termination

of the current scope, either due to normal program flow, or due to encountering a

terminating expression.

6.7.48.4 Names and identifiers within the deferred expression are resolved during evaluation

of the defer-expression.

Thus, a binding created after a defer-expression is evaluated can’t be referenced

within the deferred expression. This is also true of shadowed bindings.

6.7.48.5 If several expressions are deferred in a single scope, their side-effects shall occur

in the reverse of the order that they appear in the program source.

6.7.48.6 If a scope is terminated before a defer-expression within the scope (but not an

expression which was already deferred) would be evaluated, the side-effects of the

expression shall not occur.

6.7.48.7 Before a scope terminates, all active nested scopes shall also be terminated, in

order, from smallest region encompassed to largest.

6.7.48.8 Before a control-expression is evaluated (but after its provided expression is eval-

uated, if present), the scope associated with its selected expression is terminated.

Forward references: «6.7.50: Control expressions»

6.7.48.9 Before a function with a result type of never is called by a call-expression (but after

all arguments have been evaluated), as well as before the execution environment

aborts for any reason, the active function scope most recently made active is

terminated.

6.7.48.10 As a special case, if a deferred expression is currently being executed, then if a

scope outside of the inner-most deferred expression would terminate, the scope

within the inner-most deferred expression which encompasses the largest region

shall terminate instead.

This is intended to prevent exponential code generation when deferred expressions

may abort.

6.7.49 Compound expressions

expression-list:

expression ; expression-listopt
binding-list ; expression-listopt
defer-expression ; expression-listopt

compound-expression:

labelopt { expression-list }

6.7.49.1 A compound-expression evaluates a list of expressions in sequence.

6.7.49.2 If a type hint is provided to a compound-expression, the hint shall be provided to

the expression of any yield-expression which selects that compound-expression.

65

D
R
A
FT

6.7.49.3 The implementation shall establish a new scope for the compound-expression. The

expressions shall then shall be evaluated such that the side-effects of each all occur

in the order that each expression appears.

6.7.49.4 If a label is present, the established scope shall be labelled with its name.

6.7.49.5 None of the items in the expression-list shall have a result type whose error flag

is set, nor shall any of the items have a tagged union result type which has a type

with the error flag set among its member types.

6.7.49.6 Only the final item in the expression-list is permitted to have the result type never.

6.7.49.7 If the final item in the expression-list doesn’t have the result type never, the

compound-expression shall behave exactly as though yield void;were appended

to the end of the expression-list.

The implicitly added yield-expression guarantees that all compound-expressions

will end with an expression whose result type is never.

6.7.49.8 The result type of a compound-expression shall be the «6.10: Result type re-

duction algorithm» applied to the result types of the expressions used in all all

yield-expressions which select this compound-expression.

If no yield-expression selects this compound-expression (and a yield-expression

wasn’t implicitly appended to the expression-list), the result type is never.

6.7.50 Control expressions

control-expression:

break labelopt
continue labelopt
return expressionopt
yield-expression

yield-expression:

yield

yield expression

yield label

yield label , expression

6.7.50.1 A control-expression causes control to jump to another part of the program, possibly

affecting the value and/or result of the selected expression or function. The result

type is never.

6.7.50.2 The selected expression or function shall be selected from a pool which contains

the current function, as well as all expressions within the current function with an

associated scope which is active. Furthermore, if a label is provided, all expressions

whose associated scope is unlabelled or whose associated scope’s label doesn’t

match the provided label shall be excluded from the pool. The means by which

an expression or function is selected from this pool varies based on the form of

control-expression used. If no suitable expression or function can be selected, a

diagnostic message shall be printed and the translation phase shall abort.

66

D
R
A
FT

6.7.50.3 In the break and continue forms, if a label isn’t provided, the selected expression

shall be the for-loop whose associated scope encompasses the smallest region. If

a label is provided, the selected expression shall be the expression whose scope

encompasses the smallest region, and if this expression isn’t a for-loop, a diagnostic

message shall be printed and the translation phase shall abort. The break form

shall cause the loop to end without evaluating the condition or the afterthought. The

continue form shall cause the loop to repeat immediately, running the afterthought

if present, re-testing the condition, and repeating the loop if true.

6.7.50.4 The return form shall select the current function. If an expression is given, its

result shall be used as the result of the function, otherwise, void shall be used. The

result type shall be assignable to the function’s result type, which shall be provided

to the expression as a type hint, if the expression is present.

6.7.50.5 In the yield-expression form, if a label isn’t provided, the selected expression

shall be the compound-expression whose associated scope encompasses the small-

est region. If a label is provided, the selected expression shall be the expres-

sion whose scope encompasses the smallest region, and if this expression isn’t

a compound-expression, a diagnostic message shall be printed and the translation

phase shall abort. A yield-expression that isn’t provided an expression is equivalent

to a yield-expression provided the expression void. The provided expression shall

be used as the result value for the selected compound-expression.

A yield-expression may select the implicit compound-expression introduced by a

switch-expression or match-expression.

6.7.50.6 If a control-expression is usedwithin the expression tree formed by a defer-expression,

and the selected expression isn’t a descendent of the same tree, the translation en-

vironment shall print a diagnostic message and abort.

6.7.51 High-level expression class

expression:

assignment

logical-or-expression

if-expression

for-loop

control-expression

6.8 Type promotion

6.8.1 The operands of some arithmetic expressions are subject to type promotion, to allow for

arithmetic between disjoint types. The operand with the smaller width may be promoted,

or implicitly cast, to the width of the other operand. Unless explicitly covered by the

following cases, operands shall not be promoted, and the translation environment shall

print a diagnostic message and abort for incompatible combinations of operand types.

6.8.2 For expressions where the result type is determined by type promotion, the result type shall

67

D
R
A
FT

be equivalent to the type of the operand which has the largest width.

6.8.3 For expressions involving at least one flexible type, the result type shall be determined by

the «6.11: Flexible type promotion algorithm».

6.8.4 For expressions involving two integer types, the type with smaller width may be promoted

to the type with larger width only if the signedness is the same for each operand.

6.8.5 Expressions involving uintptr and size promote to uintptr, expressions involving

uintptr and the null type promote to uintptr, and expressions involving uintptr and a

pointer type promote to that pointer type. All other expressions involving uintptr shall

cause the translation environment to print a diagnostic message and abort.

6.8.6 An integer type may be promoted to an enum type whose storage is the same as the integer’s

storage.

6.8.7 For expressions involving floating point types, f32 may be promoted to f64.

6.8.8 For expressions involving pointer types, the null type may be promoted to any nullable

pointer type, and a non-nullable pointer type may be promoted to a nullable pointer type

with the same secondary type. Any pointer type may be promoted to an opaque pointer.

6.8.9 A mutable type may be promoted to a constant type which is otherwise equivalent to the

mutable type, or any other type which that constant type may promote to.

6.8.10 A pointer type may be promoted to another pointer type if the secondary type of the pointer

may be promoted to the secondary type of the second pointer.

6.8.11 An array type may promote to an array type with undefined size with an equivalent member

type.

6.8.12 A non-aliased type Amay promote to a type alias B if type Amay promote to the underlying

type of type B.

6.9 Translation compatible expression subset

The translation compatible expression subset is a subset of expression types which the

implementation must be able to evaluate during the translation phase.

6.9.1 The following expressions are included:

68

D
R
A
FT

• logical-or-expression

• logical-xor-expression

• logical-and-expression

• equality-expression

• comparison-expression

• inclusive-or-expression

• exclusive-or-expression

• and-expression

• shift-expression

• additive-expression

• multiplicative-expression

• cast-expression

• unary-expression

• field-access-expression

• indexing-expression

• slicing-expression

• measurement-expression

• nested-expression

• plain-expression

6.9.2 All terminals which are descendants of any of the listed terminals are included, and all

non-terminals and terminals which are descendants of plain-expression are included.

6.9.3 The pointer dereference unary-expression (the * operator) shall be excluded from the

translation compatible expression subset. Additionally, the implicit pointer type dereference

semantics of field-access-expression and indexing-expression are not available.

6.9.4 The expression used for a length-expression is not required to be translation compatible as

long as the result type is either an array type or an array type’s alias, indirected via any

number of non-nullable pointer types or their aliases if appropriate.

6.9.5 The implementation is not required to use a conformant implementation of the storage

semantics of types in the translation environment, provided that there are not observable

side-effects in the execution environment as a result of any differences.

6.9.6 The operand of an offset-expression need not be translation compatible.

6.9.7 In a context where an expression is constrained to this subset, the use of an expression type

outside of this set shall cause the translation environment to print a diagnostic message and

abort.

6.10 Result type reduction algorithm

6.10.1 The result type reduction algorithm shall operate on a list of types. It shall perform the

following reductions in order:

1. Remove all instances of never

2. Replace all tagged unions with their members

3. Remove all duplicate types

4. Remove all pointer types such that an equivalent nullable pointer type exists in the list

5. Remove all mutable types such that an equivalent constant type exists

69

D
R
A
FT

6. If the null type and exactly one pointer type remain, replace both with a nullable pointer type

whose secondary type is that of the original pointer type

6.10.2 If the null type and at least one other type remain after these reductions, the translation

phase shall print a diagnostic message and abort.

6.10.3 If exactly one type remains, it shall be the result of the result type reduction algorithm.

If more than one type remains, the result of the result type reduction algorithm shall be a

tagged union containing the remaining types. If no types remain, the result of the result

type reduction algorithm shall be never.

6.11 Flexible type promotion algorithm

6.11.1 The flexible type promotion algorithm shall operate on two types, at least one of which

shall be a flexible type.

6.11.2 If both operands are flexible integers, they shall both be lowered to a flexible integer with

the minimum value set to the smaller of their minimum values and the maximum value set

to the larger of their maximum values, and that type shall be the result.

6.11.3 If both operands are flexible floats, they shall both be lowered to a new flexible float type,

and that type shall be the result of the promotion.

6.11.4 If both operands are flexible runes, they shall both be lowered to rune, which shall be the

result of the promotion.

6.11.5 If both operands are flexible types with different classes, the promotion shall fail.

6.11.6 If one operand is a tagged union type and promotion between exactly one of its members and

the flexible type succeeds, the side-effects of that promotion shall occur and that member

shall be the result of the promotion. Otherwise, if the flexible type’s default type is a

member of the tagged union, the flexible type shall be lowered to its default type and the

promotion shall succeed. Otherwise, the promotion shall fail.

6.11.7 If one operand is a flexible float and the other is a non-flexible type, the promotion shall

succeed only if the non-flexible type is a floating point type. The flexible float shall be

lowered to the non-flexible floating point type, which shall be the result of the promotion.

6.11.8 If one operand is a flexible integer and the other is a non-flexible type, the promotion shall

succeed only if the non-flexible type is an integer type, and the minimum and maximum

value fields of the flexible integer are representable within the non-flexible integer type

without any data loss. If the promotion succeeds, the flexible integer shall be lowered to

the non-flexible integer type, which shall be the result of the promotion.

6.11.9 If one operand is a flexible rune, the promotion shall succeed if the other type is either a

rune or a non-flexible integer type which can represent the flexible rune value without any

data loss. If promotion succeeds, the flexible rune shall be lowered to the other type, which

shall be the result of the promotion.

70

D
R
A
FT

6.12 Declarations

declarations:

exportopt declaration ; declarationsopt
static-assertion-expression ; declarationsopt

declaration:

global-declaration

constant-declaration

type-declaration

function-declaration

6.12.1 Adeclaration specifies the interpretation and attributes of a set of identifiers in the translation

unit’s scope.

6.12.2 If the export keyword is used, the declaration is considered to be exported, allowing other

modules to access it. An exported declaration may be visible within sub-unit scopes outside

of the current translation unit.

6.12.3 The export keyword shall not be used with a function-declaration which uses the @init,

@fini, or @test attributes.

6.12.4 Global declarations

global-declaration:

let global-bindings

const global-bindings

global-bindings:

global-binding ,opt

global-binding , global-bindings

global-binding:

decl-attropt @threadlocalopt identifier : type

decl-attropt @threadlocalopt identifier : type = expression

decl-attropt @threadlocalopt identifier = expression

decl-attr:

@symbol (string-literal)

6.12.4.1 In a global-declaration, sufficient space shall be reserved for each global-binding

to store the type associated with it. That storage shall be initialized to the value

of the expression and shall have alignment greater than or equal to the necessary

alignment for the type. In the const form, the types shall have the constant flag

enabled by default.

6.12.4.2 The identifier of each global-binding shall be inserted into the current translation

unit’s scope, for use by any other declaration in the translation unit. If the identifier

71

D
R
A
FT

already refers to an object visible in the translation unit’s scope, a diagnostic

message shall be printed and the translation phase shall be aborted.

6.12.4.3 A global-binding’s expression shall be limited to the «6.9: Translation compatible

expression subset», and shall be evaluated in the translation environment. If

specified, the type of the value of the expression shall be assignable to type. If

not specified, the type of the global-binding shall be the result of the expression.

Bindings whose type has undefined size shall not be provided an expression. If the

type of a binding is a flexible type, it shall first be lowered to its default type.

6.12.4.4 The first form of global-binding is a prototype. In this form, the implementation

shall not allocate storage for the global, and the programmer must arrange for

storage to be provided elsewhere, the manner of which is implementation-defined.

6.12.4.5 The interpretation of the @symbol form of decl-attr is implementation-defined.

@symbol shall not be used alongside @init, @fini, or @test.

The purpose of this directive is to allow users to customize the symbol name emitted

for targets like ELF.

6.12.4.6 The interpretation of @threadlocal is implementation-defined.

The purpose of this directive is to store a separate copy of a global for each thread,

similar to thread_local in C.

6.12.5 Constant declarations

constant-declaration:

def constant-bindings

constant-bindings:

constant-binding ,opt

constant-binding , constant-bindings

constant-binding:

identifier : type = expression

identifier = expression

6.12.5.1 In a constant-declaration, the identifiers in the constant-binding shall be available to

the translation environment. No storage shall be allocated for them in the execution

environment. References to them shall be equivalent to references to the expression

associated with them, with a cast to type inserted if the first form is used.

When the second form is used, expression may have a flexible result type.

6.12.5.2 The identifier of each constant-binding shall be inserted into the current translation

unit’s scope, for use by any other declaration in the translation unit. If the identifier

already refers to an object visible in the translation unit’s scope, a diagnostic

message shall be printed and the translation phase shall be aborted.

6.12.5.3 A constant-binding’s expression shall be limited to the «6.9: Translation compatible

expression subset», and shall be evaluated in the translation environment. If the

72

D
R
A
FT

first form of constant-binding is given, the type of the value of the expression shall

be assignable to type.

6.12.6 Type declarations

type-declaration:

type type-bindings

type-bindings:

type-binding ,opt

type-binding , type-bindings

type-binding:

identifier = type

identifier = enum-type

enum-type:

enum enum-storageopt { enum-values }

enum-values:

enum-value ,opt

enum-value , enum-values

enum-value:

name

name = expression

enum-storage:

integer-type

rune

6.12.6.1 In a type-declaration, the identifiers shall declare type aliases. In the first form

of type-binding, the underlying type for the identifier shall be the type. In the

second form, the underlying type shall be enum-storage, if specified. Otherwise,

the underlying type shall be int.

6.12.6.2 The identifier of each type-binding shall be inserted into the current translation

unit’s scope, for use by any other declaration in the translation unit. If the identifier

already refers to an object visible in the translation unit’s scope, a diagnostic

message shall be printed and the translation phase shall be aborted.

6.12.6.3 In the second form of type-binding, each enum-value shall be made available to the

translation unit’s scope, via an identifier comprised of the components of the type

alias’ identifier followed by the enum-value’s name. If this identifier already refers

to an object visible in the translation unit’s scope, a diagnostic message shall be

printed and the translation phase shall abort. No storage shall be allocated for them

in the execution environment. References to them shall be equivalent to references

to the enum-value’s assigned value.

73

D
R
A
FT

6.12.6.4 Each enum-value is assigned the value of its expression, if present. Otherwise,

the value assigned to it is equal to the value of the nearest lexically preceding

enum-value of this enum type plus one. If no such previous value exists, zero is

assigned. If the previous value is dependent on the value currently being assigned,

a diagnostic message shall be printed and the translation phase shall be aborted.

6.12.6.5 If an implicitly assigned enum-value would not be representable in the underlying

integer type, a diagnostic message shall be shown as per «5.5: Diagnostics».

6.12.6.6 expression, if specified, shall be limited to the «6.9: Translation compatible expres-

sion subset» and shall be evaluated in the translation environment. The resulting

value shall be assigned to the corresponding enum-value. The expression shall

be provided the enum’s type’s underlying integer type as a type hint. The result

type must be assignable to the enum type’s underlying integer type (ref «6.7.46:

Assignment»). If the expression’s result value is dependent on the value currently

being assigned, a diagnostic message shall be printed and the translation phase

shall be aborted.

6.12.6.7 The implementation shall establish a new scope for the enum-values, and each

enum-value name shall be made available in the scope.

This allows the expression for each value to refer to other values within the enum.

6.12.6.8 Each enum-value’s name shall be unique within the set of all names of enum-values

of the enum-type. Otherwise, a diagnostic message shall be printed and the

translation phase shall be aborted.

6.12.6.9 expression shall be limited to the «6.9: Translation compatible expression subset».

6.12.7 Function declarations

function-declaration:

fndec-attrsopt fn identifier prototype

fndec-attrsopt fn identifier prototype = expression

fndec-attrs:

fndec-attr

fndec-attr fndec-attrs

fndec-attr:

@fini

@init

@test

decl-attr

6.12.7.1 The identifier of each function-declaration which does not use @init, @fini, or

@test shall be inserted into the current translation unit’s scope, for use by any

other declaration in the translation unit. If the identifier already refers to an object

visible in the translation unit’s scope, a diagnostic message shall be printed and the

translation phase shall be aborted.

74

D
R
A
FT

6.12.7.2 The first form of function-declaration is a prototype, and shall cause the identifier to

refer to the function type described by the prototype and the function attributes. The

programmer must arrange for the implementation of this function to be provided

separately, the manner of which is implementation-defined. @init, @fini, and

@test shall not be used on prototypes.

6.12.7.3 The second form of function-declaration shall declare a function and its imple-

mentation. The result type of the expression shall be assignable to the prototype’s

result type.

6.12.7.4 In the second form of function-declaration, the implementation shall establish a

new scope for the expression. For each of the prototype’s parameters, in the

order that they appear in the program source, the implementation shall resolve the

parameter’s type (within the newly established scope), and then, if the name form

is used, insert the parameter’s name into the scope. The prototype’s result type

shall be resolved outside of the newly established scope. The expression shall be

translated after all named parameters have been made visible.

6.12.7.5 The @fini form of fndec-attr shall cause the function to be a finalization function.

@init shall cause it to be an initialization function. @test shall cause it to be a test

function. If multiple fndec-attrs of the same type are specified, the last one shall

override all previous ones.

6.12.7.6 Functions declared with @test, @init, or @fini shall accept no parameters, shall

return void, and need not have unique names.

6.13 Units

sub-unit:

importsopt declarationsopt

imports:

use-directive importsopt

use-directive:

use identifier ;

use name = identifier ;

use identifier :: { member-list } ;

use identifier :: * ;

member-list:

name ,opt

name , member-list

6.13.1 A unit, or translation unit, is composed of several source files as described by «5.3:

Translation steps». Each source file is a sub-unit. A specific sub-unit may have no

declarations, but the unit shall contain at least one declaration (excluding static assertions)

among its sub-units.

75

D
R
A
FT

6.13.2 Each translation unit shall establish a scope into which all of the unit’s declarations are

inserted. Each sub-unit shall also establish a scope, into which any imports shall make

declarations from other modules available.

In other words, declarations made in a sub-unit are visible to other members of that unit,

but imports in a sub-unit are not visible to other sub-units.

6.13.3 A use-directive shall declare a dependency between this module and another module (the

target module) whose namespace is specified by the use-directive’s identifier. This shall

cause the named module to be included in the final program, as described by «5.3: Trans-

lation steps». All dependencies of the target module also become dependencies of this

module.

6.13.4 If a name or identifier which would be inserted into this sub-unit’s scope by a use-directive

already refers to an object visible in the scope, a diagnostic message shall be printed and

the translation phase shall be aborted.

6.13.5 If a use-directive would cause a module to depend on itself, a diagnostic message shall be

printed and the translation phase shall be aborted.

6.13.6 The first form of use-directive shall cause all declarations exported by the target module to

be made available to this sub-unit’s scope, via an identifier comprised of the last component

of the namespace identifier followed by the components of the declaration’s identifier.

Example In the use directive use bar::baz;, identifiers in the module whose namespace

is bar::bazwill be made visible as identifiers whose first component is baz. For example, if

bar::baz exports a declaration named bat, it is made visible to this sub-unit as baz::bat.

6.13.7 The second form of use-directive shall cause all declarations exported by the target module

to be made available to this sub-unit’s scope, via an identifier comprised of the given name

followed by the components of the declaration’s identifier.

Example In the use directive use foo = bar::baz;, identifiers in the module whose

namespace is bar::baz will be made visible as identifiers whose first component is foo.

For example, if bar::baz exports a declaration named bat, it is made visible to this

sub-unit as foo::bat.

6.13.8 The third form of use-directive shall cause only the declarations named in the member-list,

each of which shall name a declaration exported by the target module, to be inserted into

this sub-unit’s scope (with the same name they were initially declared with). For each enum

type alias inserted into the scope, all of the enum’s members shall also be inserted, each

with the same name that they have in the unit scope of the target module.

Example If bar::baz exports a declaration named bat, the use directive use bar::baz::{bat},

will cause the name bat in this sub-unit’s scope to refer to said declaration.

6.13.9 The fourth form of use-directive shall cause all declarations exported by the target module to

be made available to this sub-unit’s scope, with the same names they were initially declared

with.

76

D
R
A
FT

A Language syntax summary

Lexical analysis

token:

comment

integer-literal

floating-literal

rune-literal

string-section

keyword

name

operator

attribute

invalid-attribute

operator: one of:

! != % %= & && &&= &= () * *= + += , - -= / /= :

:: ; < << <<= <= = == => > >= >> >>= ? [] ^ ^= ^^ ^^= { |

|= || ||= } ~

comment: exactly:

// comment-chars

comment-chars: exactly:

comment-char comment-charsopt

comment-char:

Any character other than U+000A

Keywords

keyword: one of:

abort align alloc append as assert bool break case const continue

def defer delete done else enum export f32 f64 false fn for

free i16 i32 i64 i8 if insert int is len let match never null

nullable offset opaque return rune size static str struct switch

true type u16 u32 u64 u8 uint uintptr union use vaarg vaend

valist vastart void yield _

77

D
R
A
FT

Attributes

attribute: one of:

@fini @init @offset @packed @symbol @test @threadlocal

invalid-attribute: exactly:

@ name

Identifiers

identifier:

name

name :: identifier

name: exactly:

nondigit

name alnum

nondigit: one of:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z
_

decimal-digit: one of:

0 1 2 3 4 5 6 7 8 9

alnum:

decimal-digit

nondigit

78

D
R
A
FT

Types

type:

constopt !opt storage-class

storage-class:

primitive-type

pointer-type

struct-union-type

tuple-type

tagged-union-type

slice-array-type

function-type

alias-type

unwrapped-alias

primitive-type:

integer-type

floating-type

bool

done

never

opaque

rune

str

valist

void

integer-type: one of:

i8 i16 i32 i64 u8 u16 u32 u64 int uint size uintptr
floating-type:

f32

f64

pointer-type:

* type

nullable * type

79

D
R
A
FT

struct-union-type:

struct @packedopt { struct-fields }

union { struct-union-fields }

struct-union-fields:

struct-union-field ,opt

struct-union-field , struct-union-fields

struct-union-field:

name : type

struct-union-type

identifier

struct-fields:

struct-field ,opt

struct-field , struct-fields

struct-field:

offset-specifieropt struct-union-field

offset-specifier:

@offset (expression)
tuple-type:

(tuple-types)

tuple-types:

type , type ,opt

type , tuple-types

tagged-union-type:

(tagged-types)

tagged-types:

type | type |opt

type | tagged-types

slice-array-type:

[] type

[expression] type

[*] type

[_] type

80

D
R
A
FT

function-type:

fn prototype

prototype:

(parameter-listopt) type

parameter-list:

parameters ,opt

parameters ...

parameters , ...

...

parameters:

parameter

parameters , parameter

parameter:

name : type default-valueopt
type default-valueopt

default-value:

= expression

alias-type:

identifier

unwrapped-alias:

... identifier

Expressions

literal:

integer-literal

floating-literal

rune-literal

string-literal

array-literal

struct-literal

tuple-literal

true

false

null

void

done

81

D
R
A
FT

floating-literal: exactly:

nonzero-decimal-digits . decimal-digits decimal-exponentopt floating-suffixopt
nonzero-decimal-digits decimal-exponentopt floating-suffix

0x hex-digits . hex-digits binary-exponent floating-suffixopt
0x hex-digits binary-exponent floating-suffixopt

floating-suffix: one of:

f32 f64

decimal-digits-without-separators: exactly:

decimal-digit decimal-digits-without-separatorsopt

decimal-digits: exactly:

decimal-digit decimal-digitsopt
decimal-digit _ decimal-digits

nonzero-decimal-digits: exactly:

0

nonzero-decimal-digit decimal-digitsopt
nonzero-decimal-digit _ decimal-digits

nonzero-decimal-digit: one of:

1 2 3 4 5 6 7 8 9

hex-digits: exactly:

hex-digit hex-digitsopt
hex-digit _ hex-digits

hex-digit: one of:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

decimal-exponent: exactly:

decimal-exponent-char signopt decimal-digits-without-separators

binary-exponent: exactly:

binary-exponent-char signopt decimal-digits-without-separators

sign: one of:

+ -

decimal-exponent-char: one of:

e E

binary-exponent-char: one of:

p P

82

D
R
A
FT

integer-literal: exactly:

0x hex-digits integer-suffixopt
0o octal-digits integer-suffixopt
0b binary-digits integer-suffixopt
nonzero-decimal-digits positive-decimal-exponentopt integer-suffixopt

octal-digits: exactly:

octal-digit octal-digitsopt
octal-digit _ octal-digits

octal-digit: one of:

0 1 2 3 4 5 6 7

binary-digits: exactly:

binary-digit binary-digitsopt
binary-digit _ binary-digits

binary-digit: one of:

0 1

positive-decimal-exponent:

decimal-exponent-char +opt decimal-digits-without-separators

integer-suffix: one of:

i u z i8 i16 i32 i64 u8 u16 u32 u64

rune-literal: exactly:

' rune '

rune:

Any character other than \ or '

escape-sequence

escape-sequence: exactly:

named-escape

\x hex-digit hex-digit

\u fourbyte

\U eightbyte

fourbyte: exactly:

hex-digit hex-digit hex-digit hex-digit

eightbyte: exactly:

fourbyte fourbyte

named-escape: one of:

\0 \a \b \f \n \r \t \v \\ \' \"

83

D
R
A
FT

string-literal:

string-section string-literalopt

string-section: exactly:

" string-charsopt "

` rawstring-charsopt `

string-chars: exactly:

string-char string-charsopt

string-char:

Any character other than \ or "

escape-sequence

rawstring-chars: exactly:

rawstring-char rawstring-charsopt

rawstring-char:

Any character other than `

array-literal:

[array-membersopt]

array-members:

expression ,opt

expression ...

expression , array-members

struct-literal:

struct { field-values ,opt }

identifier { struct-initializer }

struct-initializer:

field-values ,opt

field-values , ...

...

field-values:

field-value

field-values , field-value

field-value:

name = expression

name : type = expression

struct-literal

84

D
R
A
FT

tuple-literal:

(tuple-items)

tuple-items:

expression , expression ,opt

expression , tuple-items

plain-expression:

identifier

literal

nested-expression:

plain-expression

(expression)

allocation-expression:

alloc (expression)

alloc (expression ...)

alloc (expression , expression)

free (expression)

assertion-expression:

assert (expression)

assert (expression , expression)

abort (expressionopt)

static-assertion-expression:

static assertion-expression

call-expression:

postfix-expression (argument-listopt)

argument-list:

expression ,opt

expression ...

expression , argument-list

85

D
R
A
FT

measurement-expression:

align-expression

size-expression

length-expression

offset-expression

align-expression:

align (type)

size-expression:

size (type)

length-expression:

len (expression)

offset-expression:

offset (offset-operand)

offset-operand:

field-access-expression

(offset-operand)

field-access-expression:

postfix-expression . name

postfix-expression . integer-literal

indexing-expression:

postfix-expression [expression]

slicing-expression:

postfix-expression [expressionopt .. expressionopt]

slice-mutation-expression:

append-expression

insert-expression

delete-expression

append-expression:

staticopt append (object-selector , expression)

staticopt append (object-selector , expression ...)

staticopt append (object-selector , expression , expression)

86

D
R
A
FT

insert-expression:

staticopt insert (insert-operand , expression)

staticopt insert (insert-operand , expression ...)

staticopt insert (insert-operand , expression , expression)

insert-operand:

indexing-expression

(insert-operand)

delete-expression:

staticopt delete (delete-operand)

delete-operand:

indexing-expression

slicing-expression

(insert-operand)

error-checking-expression:

postfix-expression ?

postfix-expression !

postfix-expression:

nested-expression

call-expression

field-access-expression

indexing-expression

slicing-expression

error-checking-expression

object-selector:

identifier

indexing-expression

field-access-expression

(object-selector)

variadic-expression:

vastart ()

vaarg (object-selector)

vaend (object-selector)

builtin-expression:

allocation-expression

assertion-expression

measurement-expression

slice-mutation-expression

postfix-expression

static-assertion-expression

variadic-expression

87

D
R
A
FT

unary-expression:

builtin-expression

compound-expression

match-expression

switch-expression

unary-operator unary-expression

unary-operator: one of:

- ~ ! * &
cast-expression:

unary-expression

cast-expression : type

cast-expression as nullable-type

cast-expression is nullable-type

nullable-type:

type

null
multiplicative-expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

and-expression:

shift-expression

and-expression & shift-expression

exclusive-or-expression:

and-expression

exclusive-or-expression ˆ and-expression

inclusive-or-expression:

exclusive-or-expression

inclusive-or-expression | exclusive-or-expression

88

D
R
A
FT

comparison-expression:

inclusive-or-expression

comparison-expression < inclusive-or-expression

comparison-expression > inclusive-or-expression

comparison-expression <= inclusive-or-expression

comparison-expression >= inclusive-or-expression

equality-expression:

comparison-expression

equality-expression == comparison-expression

equality-expression != comparison-expression

logical-and-expression:

equality-expression

logical-and-expression && equality-expression

logical-xor-expression:

logical-and-expression

logical-xor-expression ^^ logical-and-expression

logical-or-expression:

logical-xor-expression

logical-or-expression || logical-xor-expression

if-expression:

if conditional-branch

if conditional-branch else expression

conditional-branch:

(expression) expression

89

D
R
A
FT

for-loop:

for labelopt (for-predicate) expression

for-predicate:

iterable-binding

expression

binding-list ; expression

expression ; expression

binding-list ; expression ; expression

iterable-binding:

iterable-binding-left .. expression

iterable-binding-left & .. expression

iterable-binding-left => expression

iterable-binding-left:

const binding-name

const binding-name : type

let binding-name

let binding-name : type

label:

: name

switch-expression:

switch labelopt (expression) { switch-cases }

switch-cases:

switch-case switch-casesopt

switch-case:

case case-options => expression-list

case => expression-list

case-options:

expression ,opt

expression , case-options

match-expression:

match labelopt (expression) { match-cases }

match-cases:

match-case match-casesopt

match-case:

case let name : type => expression-list

case nullable-type => expression-list

case => expression-list

90

D
R
A
FT

assignment:

assignment-target assignment-op expression

slicing-assignment-target = expression

assignment-target:

object-selector

indirect-assignment-target

indirect-assignment-target:

* unary-expression

(indirect-assignment-target)

slicing-assignment-target:

slicing-expression

(slicing-assignment-target)

assignment-op: one of:

= += -= *= /= %= <<= >>= &= |= ^= &&= ||= ^^=
binding-list:

staticopt let bindings

staticopt const bindings

def bindings

bindings:

binding ,opt

binding , bindings

binding:

binding-name = expression

binding-name : type = expression

binding-name:

name

(tuple-binding-names)

tuple-binding-names:

tuple-binding-name , tuple-binding-name ,opt

tuple-binding-name , tuple-binding-names

tuple-binding-name:

name
_

defer-expression:

defer expression

91

D
R
A
FT

expression-list:

expression ; expression-listopt
binding-list ; expression-listopt
defer-expression ; expression-listopt

compound-expression:

labelopt { expression-list }

control-expression:

break labelopt
continue labelopt
return expressionopt
yield-expression

yield-expression:

yield

yield expression

yield label

yield label , expression

expression:

assignment

logical-or-expression

if-expression

for-loop

control-expression

Declarations

declarations:

exportopt declaration ; declarationsopt
static-assertion-expression ; declarationsopt

declaration:

global-declaration

constant-declaration

type-declaration

function-declaration

92

D
R
A
FT

global-declaration:

let global-bindings

const global-bindings

global-bindings:

global-binding ,opt

global-binding , global-bindings

global-binding:

decl-attropt @threadlocalopt identifier : type

decl-attropt @threadlocalopt identifier : type = expression

decl-attropt @threadlocalopt identifier = expression

decl-attr:

@symbol (string-literal)

constant-declaration:

def constant-bindings

constant-bindings:

constant-binding ,opt

constant-binding , constant-bindings

constant-binding:

identifier : type = expression

identifier = expression

93

D
R
A
FT

type-declaration:

type type-bindings

type-bindings:

type-binding ,opt

type-binding , type-bindings

type-binding:

identifier = type

identifier = enum-type

enum-type:

enum enum-storageopt { enum-values }

enum-values:

enum-value ,opt

enum-value , enum-values

enum-value:

name

name = expression

enum-storage:

integer-type

rune

function-declaration:

fndec-attrsopt fn identifier prototype

fndec-attrsopt fn identifier prototype = expression

fndec-attrs:

fndec-attr

fndec-attr fndec-attrs

fndec-attr:

@fini

@init

@test

decl-attr

94

D
R
A
FT

Units

sub-unit:

importsopt declarationsopt

imports:

use-directive importsopt

use-directive:

use identifier ;

use name = identifier ;

use identifier :: { member-list } ;

use identifier :: * ;

member-list:

name ,opt

name , member-list

95

	Introduction
	Copyright

	Scope
	Terms and definitions
	Conformance
	Program environment
	Translation environment
	Translation steps
	Execution environment
	The freestanding environment
	The hosted environment
	The test environment
	Program execution

	Diagnostics

	Language
	Notation
	Lexical analysis
	Keywords
	Attributes
	Identifiers
	Types
	Integer types
	Floating point types
	Rune types
	Flexible types
	Other primitive types
	Pointer types
	Struct and union types
	Tuple types
	Tagged union types
	Slice and array types
	String types
	Function types
	Type aliases

	Expressions
	Literals
	Floating literals
	Integer literals
	Rune literals
	String literals
	Array literals
	Struct literals
	Tuple literals
	Plain expressions
	Allocations
	Assertions
	Calls
	Measurements
	Field access
	Indexing
	Slicing
	Appending
	Inserting
	Deleting
	Error checking
	Postfix expressions
	Variadic expressions
	Builtin expressions
	Unary expressions
	Casts, type assertions, and type tests
	Multiplicative arithmetic
	Additive arithmetic
	Bit shifting arithmetic
	Bitwise arithmetic
	Logical comparisons
	Logical arithmetic
	If expressions
	For loops
	Switch expressions
	Match expressions
	Assignment
	Binding expressions
	Defer expressions
	Compound expressions
	Control expressions
	High-level expression class

	Type promotion
	Translation compatible expression subset
	Result type reduction algorithm
	Flexible type promotion algorithm
	Declarations
	Global declarations
	Constant declarations
	Type declarations
	Function declarations

	Units

	Language syntax summary

